Deep Bayesian Reinforcement Learning for Spacecraft Proximity Maneuvers and Docking
- URL: http://arxiv.org/abs/2311.03680v2
- Date: Wed, 22 May 2024 02:29:29 GMT
- Title: Deep Bayesian Reinforcement Learning for Spacecraft Proximity Maneuvers and Docking
- Authors: Desong Du, Naiming Qi, Yanfang Liu, Wei Pan,
- Abstract summary: We introduce a novel Bayesian actor-critic reinforcement learning algorithm to learn a control policy with the stability guarantee.
The proposed algorithm has been experimentally evaluated on a spacecraft air-bearing testbed and shows impressive and promising performance.
- Score: 4.9653656404010205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the pursuit of autonomous spacecraft proximity maneuvers and docking(PMD), we introduce a novel Bayesian actor-critic reinforcement learning algorithm to learn a control policy with the stability guarantee. The PMD task is formulated as a Markov decision process that reflects the relative dynamic model, the docking cone and the cost function. Drawing from the principles of Lyapunov theory, we frame the temporal difference learning as a constrained Gaussian process regression problem. This innovative approach allows the state-value function to be expressed as a Lyapunov function, leveraging the Gaussian process and deep kernel learning. We develop a novel Bayesian quadrature policy optimization procedure to analytically compute the policy gradient while integrating Lyapunov-based stability constraints. This integration is pivotal in satisfying the rigorous safety demands of spaceflight missions. The proposed algorithm has been experimentally evaluated on a spacecraft air-bearing testbed and shows impressive and promising performance.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Fast Value Tracking for Deep Reinforcement Learning [7.648784748888187]
Reinforcement learning (RL) tackles sequential decision-making problems by creating agents that interact with their environment.
Existing algorithms often view these problem as static, focusing on point estimates for model parameters to maximize expected rewards.
Our research leverages the Kalman paradigm to introduce a novel quantification and sampling algorithm called Langevinized Kalman TemporalTD.
arXiv Detail & Related papers (2024-03-19T22:18:19Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Neural Lyapunov Differentiable Predictive Control [2.042924346801313]
We present a learning-based predictive control methodology using the differentiable programming framework with probabilistic Lyapunov-based stability guarantees.
In conjunction, our approach jointly learns a Lyapunov function that certifies the regions of state-space with stable dynamics.
arXiv Detail & Related papers (2022-05-22T03:52:27Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
This paper investigates the use of reinforcement learning for the robust design of interplanetary trajectories in presence of severe disturbances.
An open-source implementation of the state-of-the-art algorithm Proximal Policy Optimization is adopted.
The resulting Guidance and Control Network provides both a robust nominal trajectory and the associated closed-loop guidance law.
arXiv Detail & Related papers (2020-08-19T15:22:15Z) - Reinforcement Learning with Fast Stabilization in Linear Dynamical
Systems [91.43582419264763]
We study model-based reinforcement learning (RL) in unknown stabilizable linear dynamical systems.
We propose an algorithm that certifies fast stabilization of the underlying system by effectively exploring the environment.
We show that the proposed algorithm attains $tildemathcalO(sqrtT)$ regret after $T$ time steps of agent-environment interaction.
arXiv Detail & Related papers (2020-07-23T23:06:40Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - Gaussian Process Policy Optimization [0.0]
We propose a novel actor-critic, model-free reinforcement learning algorithm.
It employs a Bayesian method of parameter space exploration to solve environments.
It is shown to be comparable to and at times empirically outperform current algorithms on environments that simulate robotic locomotion.
arXiv Detail & Related papers (2020-03-02T18:06:27Z) - Convergence Guarantees of Policy Optimization Methods for Markovian Jump
Linear Systems [3.3343656101775365]
We show that the Gauss-Newton method converges to the optimal state feedback controller for MJLS at a linear rate if at a controller which stabilizes the closed-loop dynamics in the mean sense.
We present an example to support our theory.
arXiv Detail & Related papers (2020-02-10T21:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.