A Novel Variational Lower Bound for Inverse Reinforcement Learning
- URL: http://arxiv.org/abs/2311.03698v2
- Date: Fri, 10 Nov 2023 13:26:24 GMT
- Title: A Novel Variational Lower Bound for Inverse Reinforcement Learning
- Authors: Yikang Gui, Prashant Doshi
- Abstract summary: Inverse reinforcement learning (IRL) seeks to learn the reward function from expert trajectories.
We present a new Variational Lower Bound for IRL (VLB-IRL)
Our method simultaneously learns the reward function and policy under the learned reward function.
- Score: 5.370126167091961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inverse reinforcement learning (IRL) seeks to learn the reward function from
expert trajectories, to understand the task for imitation or collaboration
thereby removing the need for manual reward engineering. However, IRL in the
context of large, high-dimensional problems with unknown dynamics has been
particularly challenging. In this paper, we present a new Variational Lower
Bound for IRL (VLB-IRL), which is derived under the framework of a
probabilistic graphical model with an optimality node. Our method
simultaneously learns the reward function and policy under the learned reward
function by maximizing the lower bound, which is equivalent to minimizing the
reverse Kullback-Leibler divergence between an approximated distribution of
optimality given the reward function and the true distribution of optimality
given trajectories. This leads to a new IRL method that learns a valid reward
function such that the policy under the learned reward achieves expert-level
performance on several known domains. Importantly, the method outperforms the
existing state-of-the-art IRL algorithms on these domains by demonstrating
better reward from the learned policy.
Related papers
- Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching [23.600285251963395]
In inverse reinforcement learning (IRL), an agent seeks to replicate expert demonstrations through interactions with the environment.
Traditionally, IRL is treated as an adversarial game, where an adversary searches over reward models, and a learner optimize the reward through repeated RL procedures.
We propose a novel approach to IRL by direct policy optimization, exploiting a linear factorization of the return as the inner product of successor features and a reward vector.
arXiv Detail & Related papers (2024-11-11T14:05:50Z) - CLARE: Conservative Model-Based Reward Learning for Offline Inverse
Reinforcement Learning [26.05184273238923]
This work aims to tackle a major challenge in offline Inverse Reinforcement Learning (IRL)
We devise a principled algorithm (namely CLARE) that solves offline IRL efficiently via integrating "conservatism" into a learned reward function.
Our theoretical analysis provides an upper bound on the return gap between the learned policy and the expert policy.
arXiv Detail & Related papers (2023-02-09T17:16:29Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Dynamics-Aware Comparison of Learned Reward Functions [21.159457412742356]
The ability to learn reward functions plays an important role in enabling the deployment of intelligent agents in the real world.
Reward functions are typically compared by considering the behavior of optimized policies, but this approach conflates deficiencies in the reward function with those of the policy search algorithm used to optimize it.
We propose the Dynamics-Aware Reward Distance (DARD), a new reward pseudometric.
arXiv Detail & Related papers (2022-01-25T03:48:00Z) - MADE: Exploration via Maximizing Deviation from Explored Regions [48.49228309729319]
In online reinforcement learning (RL), efficient exploration remains challenging in high-dimensional environments with sparse rewards.
We propose a new exploration approach via textitmaximizing the deviation of the occupancy of the next policy from the explored regions.
Our approach significantly improves sample efficiency over state-of-the-art methods.
arXiv Detail & Related papers (2021-06-18T17:57:00Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
We derive a novel policy gradient-style robust optimization approach, PG-BROIL, to balance expected performance and risk.
Results suggest PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse.
arXiv Detail & Related papers (2021-06-11T16:49:15Z) - Efficient Exploration of Reward Functions in Inverse Reinforcement
Learning via Bayesian Optimization [43.51553742077343]
inverse reinforcement learning (IRL) is relevant to a variety of tasks including value alignment and robot learning from demonstration.
This paper presents an IRL framework called Bayesian optimization-IRL (BO-IRL) which identifies multiple solutions consistent with the expert demonstrations.
arXiv Detail & Related papers (2020-11-17T10:17:45Z) - f-IRL: Inverse Reinforcement Learning via State Marginal Matching [13.100127636586317]
We propose a method for learning the reward function (and the corresponding policy) to match the expert state density.
We present an algorithm, f-IRL, that recovers a stationary reward function from the expert density by gradient descent.
Our method outperforms adversarial imitation learning methods in terms of sample efficiency and the required number of expert trajectories.
arXiv Detail & Related papers (2020-11-09T19:37:48Z) - Learning to Utilize Shaping Rewards: A New Approach of Reward Shaping [71.214923471669]
Reward shaping is an effective technique for incorporating domain knowledge into reinforcement learning (RL)
In this paper, we consider the problem of adaptively utilizing a given shaping reward function.
Experiments in sparse-reward cartpole and MuJoCo environments show that our algorithms can fully exploit beneficial shaping rewards.
arXiv Detail & Related papers (2020-11-05T05:34:14Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
We show how iteration under a more standard notion of low inherent Bellman error, typically employed in least-square value-style algorithms, can provide strong PAC guarantees on learning a near optimal value function.
We present a computationally tractable algorithm for the reward-free setting and show how it can be used to learn a near optimal policy for any (linear) reward function.
arXiv Detail & Related papers (2020-08-18T04:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.