Scene-Driven Multimodal Knowledge Graph Construction for Embodied AI
- URL: http://arxiv.org/abs/2311.03783v2
- Date: Sat, 11 May 2024 14:58:59 GMT
- Title: Scene-Driven Multimodal Knowledge Graph Construction for Embodied AI
- Authors: Song Yaoxian, Sun Penglei, Liu Haoyu, Li Zhixu, Song Wei, Xiao Yanghua, Zhou Xiaofang,
- Abstract summary: Embodied AI is one of the most popular studies in artificial intelligence and robotics.
Scene knowledge is important for an agent to understand the surroundings and make correct decisions.
Scene-MMKG construction method combines conventional knowledge engineering and large language models.
- Score: 2.380943129168748
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Embodied AI is one of the most popular studies in artificial intelligence and robotics, which can effectively improve the intelligence of real-world agents (i.e. robots) serving human beings. Scene knowledge is important for an agent to understand the surroundings and make correct decisions in the varied open world. Currently, knowledge base for embodied tasks is missing and most existing work use general knowledge base or pre-trained models to enhance the intelligence of an agent. For conventional knowledge base, it is sparse, insufficient in capacity and cost in data collection. For pre-trained models, they face the uncertainty of knowledge and hard maintenance. To overcome the challenges of scene knowledge, we propose a scene-driven multimodal knowledge graph (Scene-MMKG) construction method combining conventional knowledge engineering and large language models. A unified scene knowledge injection framework is introduced for knowledge representation. To evaluate the advantages of our proposed method, we instantiate Scene-MMKG considering typical indoor robotic functionalities (Manipulation and Mobility), named ManipMob-MMKG. Comparisons in characteristics indicate our instantiated ManipMob-MMKG has broad superiority in data-collection efficiency and knowledge quality. Experimental results on typical embodied tasks show that knowledge-enhanced methods using our instantiated ManipMob-MMKG can improve the performance obviously without re-designing model structures complexly. Our project can be found at https://sites.google.com/view/manipmob-mmkg
Related papers
- Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - Flexible and Inherently Comprehensible Knowledge Representation for
Data-Efficient Learning and Trustworthy Human-Machine Teaming in
Manufacturing Environments [0.0]
Trustworthiness of artificially intelligent agents is vital for the acceptance of human-machine teaming in industrial manufacturing environments.
We make use of G"ardenfors's cognitively inspired Conceptual Space framework to represent the agent's knowledge.
A simple typicality model is built on top of it to determine fuzzy category membership and classify instances interpretably.
arXiv Detail & Related papers (2023-05-19T11:18:23Z) - ArK: Augmented Reality with Knowledge Interactive Emergent Ability [115.72679420999535]
We develop an infinite agent that learns to transfer knowledge memory from general foundation models to novel domains.
The heart of our approach is an emerging mechanism, dubbed Augmented Reality with Knowledge Inference Interaction (ArK)
We show that our ArK approach, combined with large foundation models, significantly improves the quality of generated 2D/3D scenes.
arXiv Detail & Related papers (2023-05-01T17:57:01Z) - Choreographer: Learning and Adapting Skills in Imagination [60.09911483010824]
We present Choreographer, a model-based agent that exploits its world model to learn and adapt skills in imagination.
Our method decouples the exploration and skill learning processes, being able to discover skills in the latent state space of the model.
Choreographer is able to learn skills both from offline data, and by collecting data simultaneously with an exploration policy.
arXiv Detail & Related papers (2022-11-23T23:31:14Z) - Towards a Universal Continuous Knowledge Base [49.95342223987143]
We propose a method for building a continuous knowledge base that can store knowledge imported from multiple neural networks.
Experiments on text classification show promising results.
We import the knowledge from multiple models to the knowledge base, from which the fused knowledge is exported back to a single model.
arXiv Detail & Related papers (2020-12-25T12:27:44Z) - Knowledge-driven Data Construction for Zero-shot Evaluation in
Commonsense Question Answering [80.60605604261416]
We propose a novel neuro-symbolic framework for zero-shot question answering across commonsense tasks.
We vary the set of language models, training regimes, knowledge sources, and data generation strategies, and measure their impact across tasks.
We show that, while an individual knowledge graph is better suited for specific tasks, a global knowledge graph brings consistent gains across different tasks.
arXiv Detail & Related papers (2020-11-07T22:52:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.