Generic-to-Specific Reasoning and Learning for Scalable Ad Hoc Teamwork
- URL: http://arxiv.org/abs/2508.04163v1
- Date: Wed, 06 Aug 2025 07:44:38 GMT
- Title: Generic-to-Specific Reasoning and Learning for Scalable Ad Hoc Teamwork
- Authors: Hasra Dodampegama, Mohan Sridharan,
- Abstract summary: This paper advocates leveraging the complementary strengths of knowledge-based and data-driven methods for reasoning and learning for ad hoc teamwork.<n>For any given goal, our architecture enables each ad hoc agent to determine its actions through non-monotonic logical reasoning.<n>We experimentally evaluate our architecture's capabilities in VirtualHome, a realistic physics-based 3D simulation environment.
- Score: 10.462598319732187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI agents deployed in assistive roles often have to collaborate with other agents (humans, AI systems) without prior coordination. Methods considered state of the art for such ad hoc teamwork often pursue a data-driven approach that needs a large labeled dataset of prior observations, lacks transparency, and makes it difficult to rapidly revise existing knowledge in response to changes. As the number of agents increases, the complexity of decision-making makes it difficult to collaborate effectively. This paper advocates leveraging the complementary strengths of knowledge-based and data-driven methods for reasoning and learning for ad hoc teamwork. For any given goal, our architecture enables each ad hoc agent to determine its actions through non-monotonic logical reasoning with: (a) prior commonsense domain-specific knowledge; (b) models learned and revised rapidly to predict the behavior of other agents; and (c) anticipated abstract future goals based on generic knowledge of similar situations in an existing foundation model. We experimentally evaluate our architecture's capabilities in VirtualHome, a realistic physics-based 3D simulation environment.
Related papers
- When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration [79.69935257008467]
We introduce Knowledge Integration and Transfer Evaluation (KITE), a conceptual and experimental framework for Human-AI knowledge transfer capabilities.<n>We conduct the first large-scale human study (N=118) explicitly designed to measure it.<n>In our two-phase setup, humans first ideate with an AI on problem-solving strategies, then independently implement solutions, isolating model explanations' influence on human understanding.
arXiv Detail & Related papers (2025-06-05T20:48:16Z) - Agentic Knowledgeable Self-awareness [79.25908923383776]
KnowSelf is a data-centric approach that applies agents with knowledgeable self-awareness like humans.<n>Our experiments demonstrate that KnowSelf can outperform various strong baselines on different tasks and models with minimal use of external knowledge.
arXiv Detail & Related papers (2025-04-04T16:03:38Z) - A Comprehensive Survey of Agents for Computer Use: Foundations, Challenges, and Future Directions [4.904229981437243]
Agents for computer use (ACUs) are an emerging class of systems capable of executing complex tasks on digital devices.<n>Despite rapid progress, ACUs are not yet mature for everyday use.
arXiv Detail & Related papers (2025-01-27T15:44:02Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
We devise three novel text-based tasks for situational reasoning in the traffic domain.
We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work.
We provide in-depth analyses of model performance on data partitions and examine model predictions categorically.
arXiv Detail & Related papers (2023-06-05T01:01:12Z) - Knowledge-based Reasoning and Learning under Partial Observability in Ad
Hoc Teamwork [4.454557728745761]
This paper introduces an architecture that determines an ad hoc agent's behavior based on non-monotonic logical reasoning.
It supports online selection, adaptation, and learning of the models that predict the other agents' behavior.
We show that the performance of our architecture is comparable or better than state of the art data-driven baselines in both simple and complex scenarios.
arXiv Detail & Related papers (2023-06-01T15:21:27Z) - ArK: Augmented Reality with Knowledge Interactive Emergent Ability [115.72679420999535]
We develop an infinite agent that learns to transfer knowledge memory from general foundation models to novel domains.
The heart of our approach is an emerging mechanism, dubbed Augmented Reality with Knowledge Inference Interaction (ArK)
We show that our ArK approach, combined with large foundation models, significantly improves the quality of generated 2D/3D scenes.
arXiv Detail & Related papers (2023-05-01T17:57:01Z) - Toward a Reasoning and Learning Architecture for Ad Hoc Teamwork [4.454557728745761]
We present an architecture for ad hoc teamwork, which refers to collaboration in a team of agents without prior coordination.
Our architecture combines the principles of knowledge-based and data-driven reasoning and learning.
We use the benchmark simulated multiagent collaboration domain Fort Attack to demonstrate that our architecture supports adaptation to unforeseen changes.
arXiv Detail & Related papers (2022-08-24T13:57:33Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
We consider how information and architectural constraints can be combined with ideas from the probabilistic modeling literature to learn behavior priors.
We discuss how such latent variable formulations connect to related work on hierarchical reinforcement learning (HRL) and mutual information and curiosity based objectives.
We demonstrate the effectiveness of our framework by applying it to a range of simulated continuous control domains.
arXiv Detail & Related papers (2020-10-27T13:17:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.