OLaLa: Ontology Matching with Large Language Models
- URL: http://arxiv.org/abs/2311.03837v1
- Date: Tue, 7 Nov 2023 09:34:20 GMT
- Title: OLaLa: Ontology Matching with Large Language Models
- Authors: Sven Hertling, Heiko Paulheim
- Abstract summary: Ontology Matching is a challenging task where information in natural language is one of the most important signals to process.
With the rise of Large Language Models, it is possible to incorporate this knowledge in a better way into the matching pipeline.
We show that with only a handful of examples and a well-designed prompt, it is possible to achieve results that are en par with supervised matching systems.
- Score: 2.211868306499727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ontology (and more generally: Knowledge Graph) Matching is a challenging task
where information in natural language is one of the most important signals to
process. With the rise of Large Language Models, it is possible to incorporate
this knowledge in a better way into the matching pipeline. A number of
decisions still need to be taken, e.g., how to generate a prompt that is useful
to the model, how information in the KG can be formulated in prompts, which
Large Language Model to choose, how to provide existing correspondences to the
model, how to generate candidates, etc. In this paper, we present a prototype
that explores these questions by applying zero-shot and few-shot prompting with
multiple open Large Language Models to different tasks of the Ontology
Alignment Evaluation Initiative (OAEI). We show that with only a handful of
examples and a well-designed prompt, it is possible to achieve results that are
en par with supervised matching systems which use a much larger portion of the
ground truth.
Related papers
- Language Representations Can be What Recommenders Need: Findings and Potentials [57.90679739598295]
We show that item representations, when linearly mapped from advanced LM representations, yield superior recommendation performance.
This outcome suggests the possible homomorphism between the advanced language representation space and an effective item representation space for recommendation.
Our findings highlight the connection between language modeling and behavior modeling, which can inspire both natural language processing and recommender system communities.
arXiv Detail & Related papers (2024-07-07T17:05:24Z) - A Comparative Analysis of Conversational Large Language Models in
Knowledge-Based Text Generation [5.661396828160973]
We conduct an empirical analysis of conversational large language models in generating natural language text from semantic triples.
We compare four large language models of varying sizes with different prompting techniques.
Our findings show that the capabilities of large language models in triple verbalization can be significantly improved through few-shot prompting, post-processing, and efficient fine-tuning techniques.
arXiv Detail & Related papers (2024-02-02T15:26:39Z) - Evaluating Large Language Models in Semantic Parsing for Conversational
Question Answering over Knowledge Graphs [6.869834883252353]
This paper evaluates the performance of large language models that have not been explicitly pre-trained on this task.
Our results demonstrate that large language models are capable of generating graph queries from dialogues.
arXiv Detail & Related papers (2024-01-03T12:28:33Z) - Helping Language Models Learn More: Multi-dimensional Task Prompt for
Few-shot Tuning [36.14688633670085]
We propose MTPrompt, a multi-dimensional task prompt learning method based on task-related object, summary, and task description information.
By automatically building and searching for appropriate prompts, our proposed MTPrompt achieves the best results on few-shot samples setting and five different datasets.
arXiv Detail & Related papers (2023-12-13T10:00:44Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks.
We introduce a new prompting approach, analogical prompting, designed to automatically guide the reasoning process of large language models.
arXiv Detail & Related papers (2023-10-03T00:57:26Z) - Understanding the Effectiveness of Very Large Language Models on Dialog
Evaluation [20.18656308749408]
Large language models (LLMs) have been used for generation and can now output human-like text.
This paper investigates how the number of examples in the prompt and the type of example selection used affect the model's performance.
arXiv Detail & Related papers (2023-01-27T22:02:27Z) - Bidirectional Language Models Are Also Few-shot Learners [54.37445173284831]
We present SAP (Sequential Autoregressive Prompting), a technique that enables the prompting of bidirectional models.
We show SAP is effective on question answering and summarization.
For the first time, our results demonstrate prompt-based learning is an emergent property of a broader class of language models.
arXiv Detail & Related papers (2022-09-29T01:35:57Z) - Probing via Prompting [71.7904179689271]
This paper introduces a novel model-free approach to probing, by formulating probing as a prompting task.
We conduct experiments on five probing tasks and show that our approach is comparable or better at extracting information than diagnostic probes.
We then examine the usefulness of a specific linguistic property for pre-training by removing the heads that are essential to that property and evaluating the resulting model's performance on language modeling.
arXiv Detail & Related papers (2022-07-04T22:14:40Z) - Prompt Programming for Large Language Models: Beyond the Few-Shot
Paradigm [0.0]
We discuss methods of prompt programming, emphasizing the usefulness of considering prompts through the lens of natural language.
We introduce the idea of a metaprompt that seeds the model to generate its own natural language prompts for a range of tasks.
arXiv Detail & Related papers (2021-02-15T05:27:55Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z) - Language Models as Few-Shot Learner for Task-Oriented Dialogue Systems [74.8759568242933]
Task-oriented dialogue systems use four connected modules, namely, Natural Language Understanding (NLU), a Dialogue State Tracking (DST), Dialogue Policy (DP) and Natural Language Generation (NLG)
A research challenge is to learn each module with the least amount of samples given the high cost related to the data collection.
We evaluate the priming few-shot ability of language models in the NLU, DP and NLG tasks.
arXiv Detail & Related papers (2020-08-14T08:23:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.