Energy-Calibrated VAE with Test Time Free Lunch
- URL: http://arxiv.org/abs/2311.04071v5
- Date: Thu, 18 Jul 2024 07:24:04 GMT
- Title: Energy-Calibrated VAE with Test Time Free Lunch
- Authors: Yihong Luo, Siya Qiu, Xingjian Tao, Yujun Cai, Jing Tang,
- Abstract summary: We propose a conditional Energy-Based Model (EBM) for enhancing Variational Autoencoder (VAE)
VAEs often suffer from blurry generated samples due to the lack of a tailored training on the samples generated in the generative direction.
We extend the calibration idea of EC-VAE to variational learning and normalizing flows, and apply EC-VAE to zero-shot image restoration via neural transport prior and range-null theory.
- Score: 10.698329211674372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel generative model that utilizes a conditional Energy-Based Model (EBM) for enhancing Variational Autoencoder (VAE), termed Energy-Calibrated VAE (EC-VAE). Specifically, VAEs often suffer from blurry generated samples due to the lack of a tailored training on the samples generated in the generative direction. On the other hand, EBMs can generate high-quality samples but require expensive Markov Chain Monte Carlo (MCMC) sampling. To address these issues, we introduce a conditional EBM for calibrating the generative direction of VAE during training, without requiring it for the generation at test time. In particular, we train EC-VAE upon both the input data and the calibrated samples with adaptive weight to enhance efficacy while avoiding MCMC sampling at test time. Furthermore, we extend the calibration idea of EC-VAE to variational learning and normalizing flows, and apply EC-VAE to an additional application of zero-shot image restoration via neural transport prior and range-null theory. We evaluate the proposed method with two applications, including image generation and zero-shot image restoration, and the experimental results show that our method achieves competitive performance over single-step non-adversarial generation. Our code is available at https://github.com/DJ-LYH/EC-VAE.
Related papers
- EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.
We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - Improved Distribution Matching Distillation for Fast Image Synthesis [54.72356560597428]
We introduce DMD2, a set of techniques that lift this limitation and improve DMD training.
First, we eliminate the regression loss and the need for expensive dataset construction.
Second, we integrate a GAN loss into the distillation procedure, discriminating between generated samples and real images.
arXiv Detail & Related papers (2024-05-23T17:59:49Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
Test-time adaptation has proven effective in adapting a given trained model to unseen test samples with potential distribution shifts.
We propose a test-time Forward-Optimization Adaptation (FOA) method.
FOA runs on quantized 8-bit ViT, outperforms gradient-based TENT on full-precision 32-bit ViT, and achieves an up to 24-fold memory reduction on ImageNet-C.
arXiv Detail & Related papers (2024-04-02T05:34:33Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - Sample as You Infer: Predictive Coding With Langevin Dynamics [11.515490109360012]
We present a novel algorithm for parameter learning in generic deep generative models.
Our approach modifies the standard PC algorithm to bring performance on-par and exceeding that obtained from standard variational auto-encoder training.
arXiv Detail & Related papers (2023-11-22T19:36:47Z) - Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood [64.95663299945171]
Training energy-based models (EBMs) on high-dimensional data can be both challenging and time-consuming.
There exists a noticeable gap in sample quality between EBMs and other generative frameworks like GANs and diffusion models.
We propose cooperative diffusion recovery likelihood (CDRL), an effective approach to tractably learn and sample from a series of EBMs.
arXiv Detail & Related papers (2023-09-10T22:05:24Z) - Boosting Diffusion Models with an Adaptive Momentum Sampler [21.88226514633627]
We present a novel reverse sampler for DPMs inspired by the widely-used Adam sampler.
Our proposed sampler can be readily applied to a pre-trained diffusion model.
By implicitly reusing update directions from early steps, our proposed sampler achieves a better balance between high-level semantics and low-level details.
arXiv Detail & Related papers (2023-08-23T06:22:02Z) - Balanced Training of Energy-Based Models with Adaptive Flow Sampling [13.951904929884618]
Energy-based models (EBMs) are versatile density estimation models that directly parameterize an unnormalized log density.
We propose a new maximum likelihood training algorithm for EBMs that uses a different type of generative model, normalizing flows (NF)
Our method fits an NF to an EBM during training so that an NF-assisted sampling scheme provides an accurate gradient for the EBMs at all times.
arXiv Detail & Related papers (2023-06-01T13:58:06Z) - Towards Bridging the Performance Gaps of Joint Energy-based Models [1.933681537640272]
Joint Energy-based Model (JEM) achieves high classification accuracy and image generation quality simultaneously.
We introduce a variety of training techniques to bridge the accuracy gap and the generation quality gap of JEM.
Our SADA-JEM achieves state-of-the-art performances and outperforms JEM in image classification, image generation, calibration, out-of-distribution detection and adversarial robustness by a notable margin.
arXiv Detail & Related papers (2022-09-16T14:19:48Z) - No MCMC for me: Amortized sampling for fast and stable training of
energy-based models [62.1234885852552]
Energy-Based Models (EBMs) present a flexible and appealing way to represent uncertainty.
We present a simple method for training EBMs at scale using an entropy-regularized generator to amortize the MCMC sampling.
Next, we apply our estimator to the recently proposed Joint Energy Model (JEM), where we match the original performance with faster and stable training.
arXiv Detail & Related papers (2020-10-08T19:17:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.