論文の概要: MELEP: A Novel Predictive Measure of Transferability in Multi-Label ECG Diagnosis
- arxiv url: http://arxiv.org/abs/2311.04224v2
- Date: Wed, 12 Jun 2024 08:27:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 23:33:02.609391
- Title: MELEP: A Novel Predictive Measure of Transferability in Multi-Label ECG Diagnosis
- Title(参考訳): MELEP: マルチラベル心電図診断におけるトランスファービリティの新しい予測指標
- Authors: Cuong V. Nguyen, Hieu Minh Duong, Cuong D. Do,
- Abstract要約: 本稿では,事前学習したモデルから下流のECG診断タスクへの知識伝達の有効性を推定する手段であるMELEPを紹介する。
実験により、MELEPは、小・不均衡のECGデータに基づいて、事前学習した畳み込みと繰り返しの深部ニューラルネットワークの性能を予測できることを示した。
- 参考スコア(独自算出の注目度): 1.3654846342364306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In practical electrocardiography (ECG) interpretation, the scarcity of well-annotated data is a common challenge. Transfer learning techniques are valuable in such situations, yet the assessment of transferability has received limited attention. To tackle this issue, we introduce MELEP, which stands for Muti-label Expected Log of Empirical Predictions, a measure designed to estimate the effectiveness of knowledge transfer from a pre-trained model to a downstream multi-label ECG diagnosis task. MELEP is generic, working with new target data with different label sets, and computationally efficient, requiring only a single forward pass through the pre-trained model. To the best of our knowledge, MELEP is the first transferability metric specifically designed for multi-label ECG classification problems. Our experiments show that MELEP can predict the performance of pre-trained convolutional and recurrent deep neural networks, on small and imbalanced ECG data. Specifically, we observed strong correlation coefficients (with absolute values exceeding 0.6 in most cases) between MELEP and the actual average F1 scores of the fine-tuned models. Our work highlights the potential of MELEP to expedite the selection of suitable pre-trained models for ECG diagnosis tasks, saving time and effort that would otherwise be spent on fine-tuning these models.
- Abstract(参考訳): 実用的な心電図(ECG)の解釈では、注意深いデータの不足が一般的な課題である。
このような状況下では伝達学習技術は有用であるが,伝達可能性の評価は限られている。
この課題に対処するため,Mati-label expecteded Log of Empirical Predictionsの略であるMELEPを導入する。これは,事前学習モデルから下流マルチラベルECG診断タスクへの知識伝達の有効性を推定するための指標である。
MELEPは汎用的であり、異なるラベルセットで新しいターゲットデータを扱う。
私たちの知る限りでは、MELEPはマルチラベルECG分類問題に特化して設計された最初の転送可能性指標である。
実験により、MELEPは、小・不均衡のECGデータに基づいて、事前学習した畳み込みと繰り返しの深部ニューラルネットワークの性能を予測できることを示した。
具体的には、MELEPと微調整モデルの平均F1スコアとの間に強い相関係数(ほとんどの場合0.6を超える絶対値)を観測した。
我々の研究は、ECG診断タスクに適したトレーニング済みモデルの選定を迅速化し、これらのモデルの微調整に費やされる時間と労力を節約するMELEPの可能性を強調している。
関連論文リスト
- Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
本研究では,グラフ畳み込みネットワーク(GCN)を導入し,相関行列として各カテゴリ間の先行的共起を多ラベル分類のためのディープラーニングモデルに活用する。
本稿では,GCNからの予測を融合モデルからの予測の補完情報とみなすグラフ・アンサンブル学習モデルを提案する。
論文 参考訳(メタデータ) (2023-07-04T13:19:57Z) - Density-Aware Personalized Training for Risk Prediction in Imbalanced
Medical Data [89.79617468457393]
不均衡率(クラス密度差)のトレーニングモデルは、最適以下の予測につながる可能性がある。
この不均衡問題に対するモデルトレーニングのためのフレームワークを提案する。
実世界の医療データセットにおけるモデルの性能向上を実証する。
論文 参考訳(メタデータ) (2022-07-23T00:39:53Z) - Lead-agnostic Self-supervised Learning for Local and Global
Representations of Electrocardiogram [6.497259394685037]
本稿では,局所的およびグローバルな文脈表現を学習し,下流タスクの一般化性と性能を向上させるためのECG事前学習手法を提案する。
心臓不整脈分類と患者同定の2つの下流課題に対する実験結果から,提案手法が他の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-03-14T07:10:39Z) - MetaVA: Curriculum Meta-learning and Pre-fine-tuning of Deep Neural
Networks for Detecting Ventricular Arrhythmias based on ECGs [9.600976281032862]
心室不整脈(VA)は突然の心臓死の主な原因である。
グループレベルの多様性を解決するために,カリキュラム学習法(CL)を用いたモデル非依存メタラーニング(MAML)を提案する。
利用可能なECGデータセットを3つ組み合わせて実験を行った。
論文 参考訳(メタデータ) (2022-02-25T01:26:19Z) - Multiple Organ Failure Prediction with Classifier-Guided Generative
Adversarial Imputation Networks [4.040013871160853]
多臓器不全 (MOF) は集中治療室 (ICU) 患者の死亡率が高い重篤な症候群である。
機械学習モデルを電子健康記録に適用することは、欠落した値の広範性のために難しい。
論文 参考訳(メタデータ) (2021-06-22T15:49:01Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
本研究では,前腕のEMG活性をハンドキネマティクスに連続的にマップする,長期記憶(LSTM)ネットワークに基づく新しい手法を提案する。
私たちの研究は、この困難なデータセットを使用するハンドキネマティクスの予測に関する最初の報告です。
提案手法は, 人工手指の複数のDOFの独立的, 比例的アクティベーションのための制御信号の生成に適していることが示唆された。
論文 参考訳(メタデータ) (2021-04-29T00:11:32Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。