GPT-ST: Generative Pre-Training of Spatio-Temporal Graph Neural Networks
- URL: http://arxiv.org/abs/2311.04245v1
- Date: Tue, 7 Nov 2023 02:36:24 GMT
- Title: GPT-ST: Generative Pre-Training of Spatio-Temporal Graph Neural Networks
- Authors: Zhonghang Li, Lianghao Xia, Yong Xu, Chao Huang
- Abstract summary: This work aims to address challenges by introducing a pre-training framework that seamlessly integrates with baselines and enhances their performance.
The framework is built upon two key designs: (i) We propose a.
apple-to-apple mask autoencoder as a pre-training model for learning-temporal dependencies.
These modules are specifically designed to capture intra-temporal customized representations and semantic- and inter-cluster relationships.
- Score: 24.323017830938394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, there has been a rapid development of spatio-temporal
prediction techniques in response to the increasing demands of traffic
management and travel planning. While advanced end-to-end models have achieved
notable success in improving predictive performance, their integration and
expansion pose significant challenges. This work aims to address these
challenges by introducing a spatio-temporal pre-training framework that
seamlessly integrates with downstream baselines and enhances their performance.
The framework is built upon two key designs: (i) We propose a spatio-temporal
mask autoencoder as a pre-training model for learning spatio-temporal
dependencies. The model incorporates customized parameter learners and
hierarchical spatial pattern encoding networks. These modules are specifically
designed to capture spatio-temporal customized representations and intra- and
inter-cluster region semantic relationships, which have often been neglected in
existing approaches. (ii) We introduce an adaptive mask strategy as part of the
pre-training mechanism. This strategy guides the mask autoencoder in learning
robust spatio-temporal representations and facilitates the modeling of
different relationships, ranging from intra-cluster to inter-cluster, in an
easy-to-hard training manner. Extensive experiments conducted on representative
benchmarks demonstrate the effectiveness of our proposed method. We have made
our model implementation publicly available at https://github.com/HKUDS/GPT-ST.
Related papers
- Expand and Compress: Exploring Tuning Principles for Continual Spatio-Temporal Graph Forecasting [17.530885640317372]
We propose a novel prompt tuning-based continuous forecasting method.
Specifically, we integrate the base-temporal graph neural network with a continuous prompt pool stored in memory.
This method ensures that the model sequentially learns from the widespread-temporal data stream to accomplish tasks for corresponding periods.
arXiv Detail & Related papers (2024-10-16T14:12:11Z) - Graph Masked Autoencoder for Spatio-Temporal Graph Learning [38.085962443141206]
In urban sensing applications, effective-temporal prediction frameworks play a crucial role in traffic analysis, human mobility evaluations and crime prediction.
The presence of data noise and sparsity in spatial and temporal data presents significant challenges for existing neural network models in learning robust representations.
We propose a novel self-supervised learning paradigm for effective-temporal data augmentation.
arXiv Detail & Related papers (2024-10-14T07:33:33Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - RPMixer: Shaking Up Time Series Forecasting with Random Projections for Large Spatial-Temporal Data [33.0546525587517]
We propose a all-Multi-Layer Perceptron (all-MLP) time series forecasting architecture called RPMixer.
Our method capitalizes on the ensemble-like behavior of deep neural networks, where each individual block behaves like a base learner in an ensemble model.
arXiv Detail & Related papers (2024-02-16T07:28:59Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
We show that using high-level contextualized features as prediction targets can achieve superior performance.
Specifically, we propose Skeleton2vec, a simple and efficient self-supervised 3D action representation learning framework.
Our proposed Skeleton2vec outperforms previous methods and achieves state-of-the-art results.
arXiv Detail & Related papers (2024-01-01T12:08:35Z) - An Adaptive Framework for Generalizing Network Traffic Prediction
towards Uncertain Environments [51.99765487172328]
We have developed a new framework using time-series analysis for dynamically assigning mobile network traffic prediction models.
Our framework employs learned behaviors, outperforming any single model with over a 50% improvement relative to current studies.
arXiv Detail & Related papers (2023-11-30T18:58:38Z) - Spatio-Temporal Meta Contrastive Learning [18.289397543341707]
We propose a new-temporal contrastive learning framework to encode robust and generalizable S-temporal Graph representations.
We show that our framework significantly improves performance over various state-of-the-art baselines in traffic crime prediction.
arXiv Detail & Related papers (2023-10-26T04:56:31Z) - Revisiting the Temporal Modeling in Spatio-Temporal Predictive Learning
under A Unified View [73.73667848619343]
We introduce USTEP (Unified S-TEmporal Predictive learning), an innovative framework that reconciles the recurrent-based and recurrent-free methods by integrating both micro-temporal and macro-temporal scales.
arXiv Detail & Related papers (2023-10-09T16:17:42Z) - Robust Spatiotemporal Traffic Forecasting with Reinforced Dynamic
Adversarial Training [13.998123723601651]
Machine learning-based forecasting models are commonly used in Intelligent Transportation Systems (ITS) to predict traffic patterns.
Most of the existing models are susceptible to adversarial attacks, which can lead to inaccurate predictions and negative consequences such as congestion and delays.
We propose a framework for incorporating adversarial training into traffic forecasting tasks.
arXiv Detail & Related papers (2023-06-25T04:53:29Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.