論文の概要: SaFL: Sybil-aware Federated Learning with Application to Face
Recognition
- arxiv url: http://arxiv.org/abs/2311.04346v1
- Date: Tue, 7 Nov 2023 21:06:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-09 17:42:26.452745
- Title: SaFL: Sybil-aware Federated Learning with Application to Face
Recognition
- Title(参考訳): SaFL: 顔認識を応用したSybil-aware Federated Learning
- Authors: Mahdi Ghafourian, Julian Fierrez, Ruben Vera-Rodriguez, Ruben
Tolosana, Aythami Morales
- Abstract要約: Federated Learning(FL)は、顧客間で共同学習を行う機械学習パラダイムである。
マイナス面として、FLは研究を開始したばかりのセキュリティとプライバシに関する懸念を提起している。
本稿では,SAFL と呼ばれる FL の毒殺攻撃に対する新しい防御法を提案する。
- 参考スコア(独自算出の注目度): 13.914187113334222
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated Learning (FL) is a machine learning paradigm to conduct
collaborative learning among clients on a joint model. The primary goal is to
share clients' local training parameters with an integrating server while
preserving their privacy. This method permits to exploit the potential of
massive mobile users' data for the benefit of machine learning models'
performance while keeping sensitive data on local devices. On the downside, FL
raises security and privacy concerns that have just started to be studied. To
address some of the key threats in FL, researchers have proposed to use secure
aggregation methods (e.g. homomorphic encryption, secure multiparty
computation, etc.). These solutions improve some security and privacy metrics,
but at the same time bring about other serious threats such as poisoning
attacks, backdoor attacks, and free running attacks. This paper proposes a new
defense method against poisoning attacks in FL called SaFL (Sybil-aware
Federated Learning) that minimizes the effect of sybils with a novel
time-variant aggregation scheme.
- Abstract(参考訳): フェデレーション学習(federated learning, fl)は、顧客間で共同学習を行うための機械学習パラダイムである。
主な目標は、プライバシを維持しながら、クライアントのローカルトレーニングパラメータを統合サーバと共有することである。
この方法では、ローカルデバイスに機密データを保持しながら、機械学習モデルの性能向上のために、大量のモバイルユーザーのデータを活用することができる。
マイナス面として、FLは研究を開始したばかりのセキュリティとプライバシーの懸念を高めている。
flの重要な脅威に対処するために、研究者は安全な集約法(準同型暗号化、安全なマルチパーティ計算など)の使用を提案している。
これらのソリューションは、いくつかのセキュリティとプライバシのメトリクスを改善すると同時に、毒殺攻撃、バックドア攻撃、フリーランニング攻撃など他の深刻な脅威をもたらす。
本稿では,新規な時変凝集法を用いてシビルの効果を最小限に抑えるsafl(sybil-aware federated learning)と呼ばれるflの中毒攻撃に対する防御手法を提案する。
関連論文リスト
- RLSA-PFL: Robust Lightweight Secure Aggregation with Model Inconsistency Detection in Privacy-Preserving Federated Learning [13.117628927803985]
フェデレートラーニング(FL)は、ローカルモデルを共有することで、中央サーバにプライベートデータを公開することなく、グローバルな機械学習モデルを協調的にトレーニングすることを可能にする。
FLでは、敵が共有モデルパラメータから機密情報を推測する可能性のあるプライバシー上の脆弱性が報告されている。
本稿では,軽量な暗号プリミティブをプライバシリスクに利用したマスキングに基づくセキュアアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2025-02-13T06:01:09Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - FheFL: Fully Homomorphic Encryption Friendly Privacy-Preserving Federated Learning with Byzantine Users [19.209830150036254]
従来の機械学習パラダイムにおけるデータプライバシの問題を軽減するために、フェデレートラーニング(FL)技術が開発された。
次世代のFLアーキテクチャでは、モデル更新をサーバから保護するための暗号化と匿名化技術が提案されている。
本稿では,完全同型暗号(FHE)に基づく新しいFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T11:20:00Z) - Shielding Federated Learning Systems against Inference Attacks with ARM
TrustZone [0.0]
フェデレートラーニング(FL)は、マシンラーニングモデルをトレーニングする上で、個人データをユーザ環境に保持する新たな視点を開放する。
近年、個人データを勾配から流出させる推論攻撃の長いリストは、効果的な保護メカニズムの考案の必要性を強調している。
GradSecは、機械学習モデルのTEEのみに敏感なレイヤを保護できるソリューションです。
論文 参考訳(メタデータ) (2022-08-11T15:53:07Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Decepticons: Corrupted Transformers Breach Privacy in Federated Learning
for Language Models [58.631918656336005]
悪意のあるパラメータベクトルを配置することで、プライベートなユーザテキストを明らかにする新たな攻撃を提案する。
FLに対する以前の攻撃とは異なり、攻撃はTransformerアーキテクチャとトークンの埋め込みの両方の特徴を利用する。
論文 参考訳(メタデータ) (2022-01-29T22:38:21Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Meta Federated Learning [57.52103907134841]
フェデレートラーニング(FL)は、時間的敵攻撃の訓練に弱い。
本稿では,メタフェデレーション学習(Meta Federated Learning, Meta-FL)を提案する。
論文 参考訳(メタデータ) (2021-02-10T16:48:32Z) - Achieving Security and Privacy in Federated Learning Systems: Survey,
Research Challenges and Future Directions [6.460846767084875]
Federated Learning (FL) により、サーバは複数の分散クライアント間で機械学習(ML)モデルを学ぶことができる。
本稿では,まずflに対するセキュリティとプライバシのアタックを調査し,各アタックを緩和するために文献で提案するソリューションを批判的に調査する。
論文 参考訳(メタデータ) (2020-12-12T13:23:56Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
このトピックに関する最初の包括的な調査を実施します。
FLの概念の簡潔な紹介と、1脅威モデル、2堅牢性に対する中毒攻撃と防御、3プライバシーに対する推論攻撃と防御、というユニークな分類学を通じて、私たちはこの重要なトピックのアクセス可能なレビューを提供します。
論文 参考訳(メタデータ) (2020-12-07T12:11:45Z) - A Secure Federated Learning Framework for 5G Networks [44.40119258491145]
分散トレーニングデータセットを使用して機械学習モデルを構築するための新たなパラダイムとして、フェデレートラーニング(FL)が提案されている。
重大なセキュリティ上の脅威は2つあり、毒殺とメンバーシップ推論攻撃である。
ブロックチェーンベースのセキュアなFLフレームワークを提案し、スマートコントラクトを作成し、悪意のあるあるいは信頼性の低い参加者がFLに参加するのを防ぐ。
論文 参考訳(メタデータ) (2020-05-12T13:27:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。