論文の概要: Uncovering Intermediate Variables in Transformers using Circuit Probing
- arxiv url: http://arxiv.org/abs/2311.04354v3
- Date: Wed, 12 Feb 2025 18:24:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:46:21.889925
- Title: Uncovering Intermediate Variables in Transformers using Circuit Probing
- Title(参考訳): 回路プローブを用いた変圧器の中間変数の探索
- Authors: Michael A. Lepori, Thomas Serre, Ellie Pavlick,
- Abstract要約: 本稿では,仮説化中間変数を演算する低レベル回路を自動的に発見する回路探索手法を提案する。
本手法は,(1)モデルが学習したアルゴリズムの解読,(2)モデル内のモジュラ構造を明らかにすること,(3)学習中の回路の発達を追跡することなどにおいて,単純な算術課題で訓練されたモデルに適用する。
- 参考スコア(独自算出の注目度): 28.81226181942661
- License:
- Abstract: Neural network models have achieved high performance on a wide variety of complex tasks, but the algorithms that they implement are notoriously difficult to interpret. It is often necessary to hypothesize intermediate variables involved in a network's computation in order to understand these algorithms. For example, does a language model depend on particular syntactic properties when generating a sentence? Yet, existing analysis tools make it difficult to test hypotheses of this type. We propose a new analysis technique - circuit probing - that automatically uncovers low-level circuits that compute hypothesized intermediate variables. This enables causal analysis through targeted ablation at the level of model parameters. We apply this method to models trained on simple arithmetic tasks, demonstrating its effectiveness at (1) deciphering the algorithms that models have learned, (2) revealing modular structure within a model, and (3) tracking the development of circuits over training. Across these three experiments we demonstrate that circuit probing combines and extends the capabilities of existing methods, providing one unified approach for a variety of analyses. Finally, we demonstrate circuit probing on a real-world use case: uncovering circuits that are responsible for subject-verb agreement and reflexive anaphora in GPT2-Small and Medium.
- Abstract(参考訳): ニューラルネットワークモデルは、様々な複雑なタスクにおいて高いパフォーマンスを実現していますが、彼らが実装したアルゴリズムは解釈が難しいことで知られています。
これらのアルゴリズムを理解するためには、ネットワークの計算に関わる中間変数を仮説化する必要があることが多い。
例えば、文を生成するとき、言語モデルは特定の構文特性に依存していますか?
しかし、既存の分析ツールでは、このタイプの仮説をテストするのが困難である。
本稿では,仮説化中間変数を演算する低レベル回路を自動的に発見する回路探索手法を提案する。
これにより、モデルパラメータのレベルでのターゲットアブレーションによる因果解析が可能になる。
本手法は,(1)モデルが学習したアルゴリズムの解読,(2)モデル内のモジュラ構造を明らかにすること,(3)学習中の回路の発達を追跡することなどにおいて,単純な算術課題で訓練されたモデルに適用する。
これら3つの実験で、回路探索が既存の手法の能力を組み合わせ、拡張し、様々な分析に統一的なアプローチを提供することを示した。
最後に,GPT2-SmallおよびMediumにおける主観的収束と反射性アナフォラの原因となる回路を明らかにする。
関連論文リスト
- Circuit Compositions: Exploring Modular Structures in Transformer-Based Language Models [22.89563355840371]
言語モデル内の高構成サブタスクの回路解析により,ニューラルネットワークのモジュラリティについて検討する。
以上の結果から,機能的に類似した回路は,ノード重なりとクロスタスク忠実度の両方を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-10-02T11:36:45Z) - Transformer Circuit Faithfulness Metrics are not Robust [0.04260910081285213]
回路の「忠実さ」を、モデルの計算の一部を損なうことによって測定する。
既存の回路忠実度スコアは、研究者の方法論的選択と回路の実際の構成要素の両方を反映していると結論付けている。
機械的解釈可能性の研究の最終的な目標は、ニューラルネットワークを理解することです。
論文 参考訳(メタデータ) (2024-07-11T17:59:00Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Transformers are uninterpretable with myopic methods: a case study with
bounded Dyck grammars [36.780346257061495]
解釈可能性法は、訓練されたモデルによって実装されたアルゴリズムを理解することを目的としている。
私たちは、モデルの個々の部分にのみフォーカスするメソッドの批判的な見解を取ります。
論文 参考訳(メタデータ) (2023-12-03T15:34:46Z) - Towards Interpretable Sequence Continuation: Analyzing Shared Circuits in Large Language Models [9.56229382432426]
本研究の目的は、トランスフォーマーモデルをアルゴリズム機能を実装する人間可読表現にリバースエンジニアリングすることである。
GPT-2 SmallとLlama-2-7Bの両方のキーサブ回路を回路解釈可能性解析により同定する。
このサブ回路は、インターバル回路、スペイン語の数字と月数継続、自然言語の単語問題など、様々な数学的なプロンプトに影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2023-11-07T16:58:51Z) - In-Context Convergence of Transformers [63.04956160537308]
勾配降下法により訓練したソフトマックスアテンションを有する一層変圧器の学習力学について検討した。
不均衡な特徴を持つデータに対しては、学習力学が段階的に収束する過程をとることを示す。
論文 参考訳(メタデータ) (2023-10-08T17:55:33Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
この研究はまず、変換器がICLを実行するための包括的な統計理論を提供する。
コンテクストにおいて、トランスフォーマーは、幅広い種類の標準機械学習アルゴリズムを実装可能であることを示す。
エンフィングル変換器は、異なるベースICLアルゴリズムを適応的に選択することができる。
論文 参考訳(メタデータ) (2023-06-07T17:59:31Z) - Transformers as Algorithms: Generalization and Implicit Model Selection
in In-context Learning [23.677503557659705]
In-context Learning (ICL) は、トランスフォーマーモデルが一連の例で動作し、オンザフライで推論を行うプロンプトの一種である。
我々は,このトランスモデルを学習アルゴリズムとして扱い,推論時別のターゲットアルゴリズムを実装するためのトレーニングを通じて専門化することができる。
変換器は適応学習アルゴリズムとして機能し、異なる仮説クラス間でモデル選択を行うことができることを示す。
論文 参考訳(メタデータ) (2023-01-17T18:31:12Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Redefining Neural Architecture Search of Heterogeneous Multi-Network
Models by Characterizing Variation Operators and Model Components [71.03032589756434]
複素領域における異なる変動演算子の効果について検討する。
モデルの複雑さと性能に影響を及ぼす変化演算子と、それを構成する異なる部分の質を推定する様々な指標に依存するモデルの両方を特徴付ける。
論文 参考訳(メタデータ) (2021-06-16T17:12:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。