Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
- URL: http://arxiv.org/abs/2311.04465v2
- Date: Tue, 19 Mar 2024 01:38:12 GMT
- Title: Solving High Frequency and Multi-Scale PDEs with Gaussian Processes
- Authors: Shikai Fang, Madison Cooley, Da Long, Shibo Li, Robert Kirby, Shandian Zhe,
- Abstract summary: PINNs often struggle to solve high-frequency and multi-scale PDEs.
We resort to the Gaussian process (GP) framework to solve this problem.
We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability.
- Score: 18.190228010565367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student $t$ mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at \url{https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE}.
Related papers
- Learning Mixtures of Gaussians Using Diffusion Models [9.118706387430883]
We give a new algorithm for learning mixtures of $k$ Gaussians to TV error.
Our approach is analytic and relies on the framework of diffusion models.
arXiv Detail & Related papers (2024-04-29T17:00:20Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Distributed Extra-gradient with Optimal Complexity and Communication
Guarantees [60.571030754252824]
We consider monotone variational inequality (VI) problems in multi-GPU settings where multiple processors/workers/clients have access to local dual vectors.
Extra-gradient, which is a de facto algorithm for monotone VI problems, has not been designed to be communication-efficient.
We propose a quantized generalized extra-gradient (Q-GenX), which is an unbiased and adaptive compression method tailored to solve VIs.
arXiv Detail & Related papers (2023-08-17T21:15:04Z) - Kernel Learning by quantum annealer [0.966840768820136]
We propose an application of the Boltzmann machine to the kernel matrix used in various machine-learning techniques.
We show that it is possible to create a spectral distribution that could not be feasible with the Gaussian distribution.
arXiv Detail & Related papers (2023-04-20T08:08:03Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Blending Neural Operators and Relaxation Methods in PDE Numerical Solvers [3.2712166248850685]
HINTS is a hybrid, iterative, numerical, and transferable solver for partial differential equations.
It balances the convergence behavior across the spectrum of eigenmodes by utilizing the spectral bias of DeepONet.
It is flexible with regards to discretizations, computational domain, and boundary conditions.
arXiv Detail & Related papers (2022-08-28T19:07:54Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Sparse Gaussian Processes with Spherical Harmonic Features [14.72311048788194]
We introduce a new class of inter-domain variational Gaussian processes (GP)
Our inference scheme is comparable to variational Fourier features, but it does not suffer from the curse of dimensionality.
Our experiments show that our model is able to fit a regression model for a dataset with 6 million entries two orders of magnitude faster.
arXiv Detail & Related papers (2020-06-30T10:19:32Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.