Non-Rigid Shape Registration via Deep Functional Maps Prior
- URL: http://arxiv.org/abs/2311.04494v1
- Date: Wed, 8 Nov 2023 06:52:57 GMT
- Title: Non-Rigid Shape Registration via Deep Functional Maps Prior
- Authors: Puhua Jiang and Mingze Sun and Ruqi Huang
- Abstract summary: We propose a learning-based framework for non-rigid shape registration without correspondence supervision.
We deform source mesh towards the target point cloud, guided by correspondences induced by high-dimensional embeddings.
Our pipeline achieves state-of-the-art results on several benchmarks of non-rigid point cloud matching.
- Score: 1.9249120068573227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a learning-based framework for non-rigid shape
registration without correspondence supervision. Traditional shape registration
techniques typically rely on correspondences induced by extrinsic proximity,
therefore can fail in the presence of large intrinsic deformations. Spectral
mapping methods overcome this challenge by embedding shapes into, geometric or
learned, high-dimensional spaces, where shapes are easier to align. However,
due to the dependency on abstract, non-linear embedding schemes, the latter can
be vulnerable with respect to perturbed or alien input. In light of this, our
framework takes the best of both worlds. Namely, we deform source mesh towards
the target point cloud, guided by correspondences induced by high-dimensional
embeddings learned from deep functional maps (DFM). In particular, the
correspondences are dynamically updated according to the intermediate
registrations and filtered by consistency prior, which prominently robustify
the overall pipeline. Moreover, in order to alleviate the requirement of
extrinsically aligned input, we train an orientation regressor on a set of
aligned synthetic shapes independent of the training shapes for DFM. Empirical
results show that, with as few as dozens of training shapes of limited
variability, our pipeline achieves state-of-the-art results on several
benchmarks of non-rigid point cloud matching, but also delivers high-quality
correspondences between unseen challenging shape pairs that undergo both
significant extrinsic and intrinsic deformations, in which case neither
traditional registration methods nor intrinsic methods work. The code is
available at https://github.com/rqhuang88/DFR.
Related papers
- SRIF: Semantic Shape Registration Empowered by Diffusion-based Image Morphing and Flow Estimation [2.336821026049481]
We propose SRIF, a novel Semantic shape Registration framework based on diffusion-based Image morphing and flow estimation.
SRIF achieves high-quality dense correspondences on challenging shape pairs, but also delivers smooth, semantically meaningful in between.
arXiv Detail & Related papers (2024-09-18T03:47:24Z) - Learning SO(3)-Invariant Semantic Correspondence via Local Shape Transform [62.27337227010514]
We introduce a novel self-supervised Rotation-Invariant 3D correspondence learner with Local Shape Transform, dubbed RIST.
RIST learns to establish dense correspondences between shapes even under challenging intra-class variations and arbitrary orientations.
RIST demonstrates state-of-the-art performances on 3D part label transfer and semantic keypoint transfer given arbitrarily rotated point cloud pairs.
arXiv Detail & Related papers (2024-04-17T08:09:25Z) - Robustifying Generalizable Implicit Shape Networks with a Tunable
Non-Parametric Model [10.316008740970037]
Generalizable models for implicit shape reconstruction from unoriented point cloud suffer from generalization issues.
We propose here an efficient mechanism to remedy some of these limitations at test time.
We demonstrate the improvement obtained through our method with respect to baselines and the state-of-the-art using synthetic and real data.
arXiv Detail & Related papers (2023-11-21T20:12:29Z) - Implicit field supervision for robust non-rigid shape matching [29.7672368261038]
Establishing a correspondence between two non-rigidly deforming shapes is one of the most fundamental problems in visual computing.
We introduce an approach based on auto-decoder framework, that learns a continuous shape-wise deformation field over a fixed template.
Our method is remarkably robust in the presence of strong artefacts and can be generalised to arbitrary shape categories.
arXiv Detail & Related papers (2022-03-15T07:22:52Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
A natural way to incorporate symmetries in shape space learning is to ask that the mapping to the shape space (encoder) and mapping from the shape space (decoder) are equivariant to the relevant symmetries.
We present a framework for incorporating equivariance in encoders and decoders by introducing two contributions.
arXiv Detail & Related papers (2021-12-03T06:41:19Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
We present SyNoRiM, a novel way to register multiple non-rigid shapes by synchronizing the maps relating learned functions defined on the point clouds.
We demonstrate via extensive experiments that our method achieves a state-of-the-art performance in registration accuracy.
arXiv Detail & Related papers (2021-11-25T02:37:59Z) - DPFM: Deep Partial Functional Maps [28.045544079256686]
We consider the problem of computing dense correspondences between non-rigid shapes with potentially significant partiality.
We propose the first learning method aimed directly at partial non-rigid shape correspondence.
Our approach uses the functional map framework, can be trained in a supervised or unsupervised manner, and learns descriptors directly from the data.
arXiv Detail & Related papers (2021-10-19T14:05:37Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural
Implicit Shapes [117.76767853430243]
We introduce SNARF, which combines the advantages of linear blend skinning for polygonal meshes with neural implicit surfaces.
We propose a forward skinning model that finds all canonical correspondences of any deformed point using iterative root finding.
Compared to state-of-the-art neural implicit representations, our approach generalizes better to unseen poses while preserving accuracy.
arXiv Detail & Related papers (2021-04-08T17:54:59Z) - ProAlignNet : Unsupervised Learning for Progressively Aligning Noisy
Contours [12.791313859673187]
"ProAlignNet" accounts for large scale misalignments and complex transformations between the contour shapes.
It learns by training with a novel loss function which is derived an upperbound of a proximity-sensitive and local shape-dependent similarity metric.
In two real-world applications, the proposed models consistently perform superior to state-of-the-art methods.
arXiv Detail & Related papers (2020-05-23T14:56:14Z) - Hamiltonian Dynamics for Real-World Shape Interpolation [66.47407593823208]
We revisit the classical problem of 3D shape and propose a novel, physically plausible approach based on Hamiltonian dynamics.
Our method yields exactly volume preserving intermediate shapes, avoids self-intersections and is scalable to high resolution scans.
arXiv Detail & Related papers (2020-04-10T18:38:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.