1-bit Quantized On-chip Hybrid Diffraction Neural Network Enabled by Authentic All-optical Fully-connected Architecture
- URL: http://arxiv.org/abs/2404.07443v1
- Date: Thu, 11 Apr 2024 02:54:17 GMT
- Title: 1-bit Quantized On-chip Hybrid Diffraction Neural Network Enabled by Authentic All-optical Fully-connected Architecture
- Authors: Yu Shao, Haiqi Gao, Yipeng Chen, Yujie liu, Junren Wen, Haidong He, Yuchuan Shao, Yueguang Zhang, Weidong Shen, Chenying Yang,
- Abstract summary: This study introduces the Hybrid Diffraction Neural Network (HDNN), a novel architecture that incorporates matrix multiplication into DNNs.
utilizing a singular phase modulation layer and an amplitude modulation layer, the trained neural network demonstrated remarkable accuracies of 96.39% and 89% in digit recognition tasks.
- Score: 4.594367761345624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical Diffraction Neural Networks (DNNs), a subset of Optical Neural Networks (ONNs), show promise in mirroring the prowess of electronic networks. This study introduces the Hybrid Diffraction Neural Network (HDNN), a novel architecture that incorporates matrix multiplication into DNNs, synergizing the benefits of conventional ONNs with those of DNNs to surmount the modulation limitations inherent in optical diffraction neural networks. Utilizing a singular phase modulation layer and an amplitude modulation layer, the trained neural network demonstrated remarkable accuracies of 96.39% and 89% in digit recognition tasks in simulation and experiment, respectively. Additionally, we develop the Binning Design (BD) method, which effectively mitigates the constraints imposed by sampling intervals on diffraction units, substantially streamlining experimental procedures. Furthermore, we propose an on-chip HDNN that not only employs a beam-splitting phase modulation layer for enhanced integration level but also significantly relaxes device fabrication requirements, replacing metasurfaces with relief surfaces designed by 1-bit quantization. Besides, we conceptualized an all-optical HDNN-assisted lesion detection network, achieving detection outcomes that were 100% aligned with simulation predictions. This work not only advances the performance of DNNs but also streamlines the path towards industrial optical neural network production.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
The neutron diffusion equation plays a pivotal role in the analysis of nuclear reactors.
Traditional PINN approaches often utilize fully connected network (FCN) architecture.
R2-PINN effectively overcomes the limitations inherent in current methods, providing more accurate and robust solutions for neutron diffusion equations.
arXiv Detail & Related papers (2024-06-23T13:49:31Z) - Free-Space Optical Spiking Neural Network [0.0]
We introduce the Free-space Optical deep Spiking Convolutional Neural Network (OSCNN)
This novel approach draws inspiration from computational models of the human eye.
Our results demonstrate promising performance with minimal latency and power consumption compared to their electronic ONN counterparts.
arXiv Detail & Related papers (2023-11-08T09:41:14Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Optical Neural Ordinary Differential Equations [44.97261923694945]
We propose the optical neural ordinary differential equations (ON-ODE) architecture that parameterizes the continuous dynamics of hidden layers with optical ODE solvers.
The ON-ODE comprises the PNNs followed by the photonic integrator and optical feedback loop, which can be configured to represent residual neural networks (ResNet) and recurrent neural networks with effectively reduced chip area occupancy.
arXiv Detail & Related papers (2022-09-26T04:04:02Z) - Scalable Nanophotonic-Electronic Spiking Neural Networks [3.9918594409417576]
Spiking neural networks (SNN) provide a new computational paradigm capable of highly parallelized, real-time processing.
Photonic devices are ideal for the design of high-bandwidth, parallel architectures matching the SNN computational paradigm.
Co-integrated CMOS and SiPh technologies are well-suited to the design of scalable SNN computing architectures.
arXiv Detail & Related papers (2022-08-28T06:10:06Z) - Converting Artificial Neural Networks to Spiking Neural Networks via
Parameter Calibration [21.117214351356765]
Spiking Neural Network (SNN) is recognized as one of the next-generation neural networks.
In this work, we argue that simply copying and pasting the weights of ANN to SNN inevitably results in activation mismatch.
We propose a set of layer-wise parameter calibration algorithms, which adjusts the parameters to minimize the activation mismatch.
arXiv Detail & Related papers (2022-05-06T18:22:09Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.