論文の概要: Hybrid Focal and Full-Range Attention Based Graph Transformers
- arxiv url: http://arxiv.org/abs/2311.04653v2
- Date: Tue, 10 Sep 2024 03:38:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 23:44:54.838013
- Title: Hybrid Focal and Full-Range Attention Based Graph Transformers
- Title(参考訳): ハイブリッド音声とフルランジアテンションに基づくグラフ変換器
- Authors: Minhong Zhu, Zhenhao Zhao, Weiran Cai,
- Abstract要約: 本稿では,Focal と Full-Range Graph Transformer (FFGT) という,純粋に注目に基づくアーキテクチャを提案する。
FFGTは、従来のフルレンジアテンションとエゴネットへのKホップアテンションを組み合わせることで、グローバル情報とローカル情報の両方を集約する。
提案手法は,各種オープンデータセット上での既存のグラフ変換器の性能を向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paradigm of Transformers using the self-attention mechanism has manifested its advantage in learning graph-structured data. Yet, Graph Transformers are capable of modeling full range dependencies but are often deficient in extracting information from locality. A common practice is to utilize Message Passing Neural Networks (MPNNs) as an auxiliary to capture local information, which however are still inadequate for comprehending substructures. In this paper, we present a purely attention-based architecture, namely Focal and Full-Range Graph Transformer (FFGT), which can mitigate the loss of local information in learning global correlations. The core component of FFGT is a new mechanism of compound attention, which combines the conventional full-range attention with K-hop focal attention on ego-nets to aggregate both global and local information. Beyond the scope of canonical Transformers, the FFGT has the merit of being more substructure-aware. Our approach enhances the performance of existing Graph Transformers on various open datasets, while achieves compatible SOTA performance on several Long-Range Graph Benchmark (LRGB) datasets even with a vanilla transformer. We further examine influential factors on the optimal focal length of attention via introducing a novel synthetic dataset based on SBM-PATTERN.
- Abstract(参考訳): 自己アテンション機構を用いたトランスフォーマーのパラダイムは,グラフ構造化データの学習において,その優位性を示している。
しかし、Graph Transformerは完全な範囲依存をモデル化できるが、ローカリティから情報を取り出すには不十分であることが多い。
一般的には、メッセージパッシングニューラルネットワーク(MPNN)を、ローカル情報をキャプチャするための補助として使用するが、サブストラクチャの解釈にはまだ不十分である。
本稿では,FocalとFull-Range Graph Transformer(FFGT)という,純粋に注目に基づくアーキテクチャを提案する。
FFGTのコアコンポーネントは複合的な注意のメカニズムであり、従来のフルレンジアテンションとエゴネットへのKホップアテンションを組み合わせることで、グローバル情報とローカル情報の両方を集約する。
標準変換器の範囲を超えて、FFGTはよりサブ構造に注意を払っているという利点がある。
提案手法は,各種オープンデータセット上での既存のグラフ変換器の性能を向上させるとともに,複数のLong-Range Graph Benchmark(LRGB)データセットにおいて,バニラ変換器を用いても互換性のあるSOTA性能を実現する。
さらに,SBM-PATTERNに基づく新しい合成データセットを導入することにより,注目の焦点距離に影響を及ぼす要因について検討した。
関連論文リスト
- CARE Transformer: Mobile-Friendly Linear Visual Transformer via Decoupled Dual Interaction [77.8576094863446]
本稿では,新しいdetextbfCoupled dutextbfAl-interactive lineatextbfR atttextbfEntion (CARE) 機構を提案する。
まず,非対称な特徴分離戦略を提案し,非対称的に学習プロセスを局所帰納バイアスと長距離依存に分解する。
分離学習方式を採用し,特徴間の相補性を完全に活用することにより,高い効率性と精度を両立させることができる。
論文 参考訳(メタデータ) (2024-11-25T07:56:13Z) - SGFormer: Single-Layer Graph Transformers with Approximation-Free Linear Complexity [74.51827323742506]
グラフ上でのトランスフォーマーにおける多層アテンションの導入の必要性を評価する。
本研究では,一層伝播を一層伝播に還元できることを示す。
これは、グラフ上で強力で効率的なトランスフォーマーを構築するための新しい技術パスを示唆している。
論文 参考訳(メタデータ) (2024-09-13T17:37:34Z) - Less is More: on the Over-Globalizing Problem in Graph Transformers [34.52455014631614]
グローバルアテンション機構は、完全に連結されたグラフにおいてより広い受容場を考慮し、多くの人が有用な情報を全てのノードから抽出できると考えている。
現在の注意機構は,これらの遠隔ノードに過度に焦点を絞っているのに対して,その近辺ノードは実際には有用な情報の大半を包含しているため,比較的弱体化している。
本稿では,コラボレーティブ・トレーニング(CoBFormer)を用いたバイレベル・グローバルグラフ変換器を提案する。
論文 参考訳(メタデータ) (2024-05-02T09:12:22Z) - DAT++: Spatially Dynamic Vision Transformer with Deformable Attention [87.41016963608067]
Deformable Attention Transformer (DAT++)を提案する。
DAT++は、85.9%のImageNet精度、54.5および47.0のMS-COCOインスタンスセグメンテーションmAP、51.5のADE20KセマンティックセグメンテーションmIoUで、様々なビジュアル認識ベンチマークで最先端の結果を達成している。
論文 参考訳(メタデータ) (2023-09-04T08:26:47Z) - SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations [75.71298846760303]
ノード特性予測ベンチマークにおいて,一層注意が驚くほど高い性能を示すことを示す。
提案手法をSGFormer (Simplified Graph Transformer) と呼ぶ。
提案手法は,大きなグラフ上にトランスフォーマーを構築する上で,独立性のある新たな技術パスを啓蒙するものである。
論文 参考訳(メタデータ) (2023-06-19T08:03:25Z) - Are More Layers Beneficial to Graph Transformers? [97.05661983225603]
現在のグラフ変換器は、深さの増大によるパフォーマンス向上のボトルネックに悩まされている。
ディープグラフ変換器は、グローバルな注目の消滅能力によって制限されている。
本稿では,符号化表現に部分構造トークンを明示的に用いたDeepGraphという新しいグラフトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2023-03-01T15:22:40Z) - Edge-augmented Graph Transformers: Global Self-attention is Enough for
Graphs [24.796242917673755]
本稿では,変圧器の残差エッジチャネルに対する簡易かつ強力な拡張を提案する。
結果として得られるフレームワークは、Edge-augmented Graph Transformer (EGT)と呼ばれ、ノード情報だけでなく、構造情報を直接受け入れ、処理し、出力することができる。
我々のフレームワークはグローバルノードの特徴集約に依存しており、グラフ畳み込みネットワーク(GCN)よりも優れたパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2021-08-07T02:18:11Z) - Feature Fusion Vision Transformer for Fine-Grained Visual Categorization [22.91753200323264]
我々は、新しい純粋なトランスベースフレームワークFeature Fusion Vision Transformer (FFVT)を提案する。
各トランス層から重要なトークンを集約し、ローカル、低レベル、中レベルの情報を補う。
我々は,相互注意重み付け (MAWS) と呼ばれる新しいトークン選択モジュールを設計し,ネットワークを効果的かつ効率的に識別トークンの選択に向けて誘導する。
論文 参考訳(メタデータ) (2021-07-06T01:48:43Z) - Rethinking Graph Transformers with Spectral Attention [13.068288784805901]
我々は、学習された位置符号化(LPE)を用いて、与えられたグラフ内の各ノードの位置を学習するtextitSpectral Attention Network$(SAN)を提示する。
ラプラシアンの完全なスペクトルを利用することで、我々のモデルは理論上グラフの区別に強力であり、類似のサブ構造を共鳴からよりよく検出することができる。
我々のモデルは最先端のGNNよりも同等かそれ以上の性能を発揮し、あらゆる注目ベースモデルよりも広いマージンで性能を向上する。
論文 参考訳(メタデータ) (2021-06-07T18:11:11Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。