Simultaneous Discovery of Quantum Error Correction Codes and Encoders with a Noise-Aware Reinforcement Learning Agent
- URL: http://arxiv.org/abs/2311.04750v3
- Date: Thu, 4 Apr 2024 09:10:38 GMT
- Title: Simultaneous Discovery of Quantum Error Correction Codes and Encoders with a Noise-Aware Reinforcement Learning Agent
- Authors: Jan Olle, Remmy Zen, Matteo Puviani, Florian Marquardt,
- Abstract summary: In this work, we significantly expand the power ofReinforcement learning approaches to QEC code discovery.
Explicitly, we train an RL agent that automatically discovers both QEC codes and their encoding circuits for a given gate set.
We introduce the concept of a noise-aware meta-agent, which learns to produce encoding strategies simultaneously for a range of noise models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the ongoing race towards experimental implementations of quantum error correction (QEC), finding ways to automatically discover codes and encoding strategies tailored to the qubit hardware platform is emerging as a critical problem. Reinforcement learning (RL) has been identified as a promising approach, but so far it has been severely restricted in terms of scalability. In this work, we significantly expand the power of RL approaches to QEC code discovery. Explicitly, we train an RL agent that automatically discovers both QEC codes and their encoding circuits for a given gate set, qubit connectivity and error model, from scratch. This is enabled by a reward based on the Knill-Laflamme conditions and a vectorized Clifford simulator, allowing us to scale our results to 20 physical qubits and distance 5 codes. Moreover, we introduce the concept of a noise-aware meta-agent, which learns to produce encoding strategies simultaneously for a range of noise models, thus leveraging transfer of insights between different situations. Our approach opens the door towards hardware-adapted accelerated discovery of QEC approaches across the full spectrum of quantum hardware platforms of interest.
Related papers
- From Easy to Hard: Tackling Quantum Problems with Learned Gadgets For Real Hardware [0.0]
Reinforcement learning has proven to be a powerful approach, but many limitations remain due to the exponential scaling of the space of possible operations on qubits.
We develop an algorithm that automatically learns composite gates ("$gadgets$") and adds them as additional actions to the reinforcement learning agent to facilitate the search.
We show that with GRL we can find very compact PQCs that improve the error in estimating the ground state of TFIM by up to $107$ fold.
arXiv Detail & Related papers (2024-10-31T22:02:32Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Near-optimal decoding algorithm for color codes using Population Annealing [44.99833362998488]
We implement a decoder that finds the recovery operation with the highest success probability.
We study the decoder performance on a 4.8.8 color code lattice under different noise models.
arXiv Detail & Related papers (2024-05-06T18:17:42Z) - Quantum Circuit Discovery for Fault-Tolerant Logical State Preparation with Reinforcement Learning [1.1891349121931318]
We propose and explore reinforcement learning to automatically discover compact and hardware-adapted fault-tolerant quantum circuits.
We show that in the task of fault-tolerant logical state preparation, RL discovers circuits with fewer gates and ancillary qubits than published results without and with hardware constraints of up to 15 physical qubits.
arXiv Detail & Related papers (2024-02-27T18:55:13Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Decoding surface codes with deep reinforcement learning and
probabilistic policy reuse [0.5999777817331317]
Current quantum hardware, also known as noisy intermediate-scale quantum computers (NISQ), are still unable to carry out computations faithfully.
Recent developments of machine learning (ML)-based techniques especially the reinforcement learning (RL) methods have been applied to the decoding problem.
We propose a continual reinforcement learning method to address these decoding challenges.
arXiv Detail & Related papers (2022-12-22T17:24:32Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Quantum Architecture Search via Continual Reinforcement Learning [0.0]
This paper proposes a machine learning-based method to construct quantum circuit architectures.
We present the Probabilistic Policy Reuse with deep Q-learning (PPR-DQL) framework to tackle this circuit design challenge.
arXiv Detail & Related papers (2021-12-10T19:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.