Quantum Imitation Learning
- URL: http://arxiv.org/abs/2304.02480v1
- Date: Tue, 4 Apr 2023 12:47:35 GMT
- Title: Quantum Imitation Learning
- Authors: Zhihao Cheng, Kaining Zhang, Li Shen, Dacheng Tao
- Abstract summary: We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
- Score: 74.15588381240795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite remarkable successes in solving various complex decision-making
tasks, training an imitation learning (IL) algorithm with deep neural networks
(DNNs) suffers from the high computation burden. In this work, we propose
quantum imitation learning (QIL) with a hope to utilize quantum advantage to
speed up IL. Concretely, we develop two QIL algorithms, quantum behavioural
cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL).
Q-BC is trained with a negative log-likelihood loss in an off-line manner that
suits extensive expert data cases, whereas Q-GAIL works in an inverse
reinforcement learning scheme, which is on-line and on-policy that is suitable
for limited expert data cases. For both QIL algorithms, we adopt variational
quantum circuits (VQCs) in place of DNNs for representing policies, which are
modified with data re-uploading and scaling parameters to enhance the
expressivity. We first encode classical data into quantum states as inputs,
then perform VQCs, and finally measure quantum outputs to obtain control
signals of agents. Experiment results demonstrate that both Q-BC and Q-GAIL can
achieve comparable performance compared to classical counterparts, with the
potential of quantum speed-up. To our knowledge, we are the first to propose
the concept of QIL and conduct pilot studies, which paves the way for the
quantum era.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quafu-RL: The Cloud Quantum Computers based Quantum Reinforcement
Learning [0.0]
In this work, we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on BAQIS Quafu quantum computing cloud.
The experimental results demonstrate that the Reinforcement Learning (RL) agents are capable of achieving goals that are slightly relaxed both during the training and inference stages.
arXiv Detail & Related papers (2023-05-29T09:13:50Z) - Learning capability of parametrized quantum circuits [2.51657752676152]
Variational quantum algorithms (VQAs) and their applications in the field of quantum machine learning through parametrized quantum circuits (PQCs) are thought to be one major way of leveraging noisy intermediate-scale quantum computing devices.
In this paper, we build upon the work by Schuld et al. and compare popular ans"atze for PQCs through the new measure of learning capability.
We also examine dissipative quantum neural networks (dQNN) as introduced by Beer et al. and propose a data re-upload structure for dQNNs to increase their learning capability.
arXiv Detail & Related papers (2022-09-21T13:26:20Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum neural networks [0.0]
This thesis combines two of the most exciting research areas of the last decades: quantum computing and machine learning.
We introduce dissipative quantum neural networks (DQNNs), which are capable of universal quantum computation and have low memory requirements while training.
arXiv Detail & Related papers (2022-05-17T07:47:00Z) - Uncovering Instabilities in Variational-Quantum Deep Q-Networks [0.0]
We show that variational quantum deep Q-networks (VQ-DQN) are subject to instabilities that cause the learned policy to diverge.
We execute RL algorithms on an actual quantum processing unit (an IBM Quantum Device) and investigate differences in behaviour between simulated and physical quantum systems.
arXiv Detail & Related papers (2022-02-10T17:52:44Z) - Variational quantum compiling with double Q-learning [0.37798600249187286]
We propose a variational quantum compiling (VQC) algorithm based on reinforcement learning (RL)
An agent is trained to sequentially select quantum gates from the native gate alphabet and the qubits they act on by double Q-learning.
It can reduce the errors of quantum algorithms due to decoherence process and gate noise in NISQ devices.
arXiv Detail & Related papers (2021-03-22T06:46:35Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.