Effective Restoration of Source Knowledge in Continual Test Time
Adaptation
- URL: http://arxiv.org/abs/2311.04991v1
- Date: Wed, 8 Nov 2023 19:21:48 GMT
- Title: Effective Restoration of Source Knowledge in Continual Test Time
Adaptation
- Authors: Fahim Faisal Niloy, Sk Miraj Ahmed, Dripta S. Raychaudhuri, Samet
Oymak and Amit K. Roy-Chowdhury
- Abstract summary: This paper introduces an unsupervised domain change detection method that is capable of identifying domain shifts in dynamic environments.
By restoring the knowledge from the source, it effectively corrects the negative consequences arising from the gradual deterioration of model parameters.
We perform extensive experiments on benchmark datasets to demonstrate the superior performance of our method compared to state-of-the-art adaptation methods.
- Score: 44.17577480511772
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional test-time adaptation (TTA) methods face significant challenges in
adapting to dynamic environments characterized by continuously changing
long-term target distributions. These challenges primarily stem from two
factors: catastrophic forgetting of previously learned valuable source
knowledge and gradual error accumulation caused by miscalibrated pseudo labels.
To address these issues, this paper introduces an unsupervised domain change
detection method that is capable of identifying domain shifts in dynamic
environments and subsequently resets the model parameters to the original
source pre-trained values. By restoring the knowledge from the source, it
effectively corrects the negative consequences arising from the gradual
deterioration of model parameters caused by ongoing shifts in the domain. Our
method involves progressive estimation of global batch-norm statistics specific
to each domain, while keeping track of changes in the statistics triggered by
domain shifts. Importantly, our method is agnostic to the specific adaptation
technique employed and thus, can be incorporated to existing TTA methods to
enhance their performance in dynamic environments. We perform extensive
experiments on benchmark datasets to demonstrate the superior performance of
our method compared to state-of-the-art adaptation methods.
Related papers
- Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments [13.163784646113214]
Continual Test-Time Adaptation (CTTA) has recently emerged as a promising technique to gradually adapt a source-trained model to continually changing target domains.
We present CTAOD, featuring three core components. Firstly, the object-level contrastive learning module extracts object-level features for contrastive learning to refine the feature representation in the target domain.
Secondly, the adaptive monitoring module dynamically skips unnecessary adaptation and updates the category-specific threshold based on predicted confidence scores to enable efficiency and improve the quality of pseudo-labels.
arXiv Detail & Related papers (2024-06-24T08:30:03Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
This paper presents an optimal strategy for streaming contexts with limited labeled data, introducing an adaptive technique for unsupervised regression.
The proposed method leverages a sparse set of initial labels and introduces an innovative drift detection mechanism.
To enhance adaptability, we integrate the ADWIN (ADaptive WINdowing) algorithm with error generalization based on Root Mean Square Error (RMSE)
arXiv Detail & Related papers (2023-12-12T19:23:54Z) - Distribution-Aware Continual Test-Time Adaptation for Semantic Segmentation [33.75630514826721]
We propose a distribution-aware tuning ( DAT) method to make semantic segmentation CTTA efficient and practical in real-world applications.
DAT adaptively selects and updates two small groups of trainable parameters based on data distribution during the continual adaptation process.
We conduct experiments on two widely-used semantic segmentation CTTA benchmarks, achieving promising performance compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2023-09-24T10:48:20Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
We propose to validate test-time adaptation methods using datasets for autonomous driving, namely CLAD-C and SHIFT.
We observe that current test-time adaptation methods struggle to effectively handle varying degrees of domain shift.
We enhance the well-established self-training framework by incorporating a small memory buffer to increase model stability.
arXiv Detail & Related papers (2023-09-18T19:34:23Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
A Continual Test-Time Adaptation task is proposed to adapt the pre-trained model to continually changing target domains.
We design a Visual Domain Adapter (ViDA) for CTTA, explicitly handling both domain-specific and domain-shared knowledge.
Our proposed method achieves state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-06-07T11:18:53Z) - Continual Test-Time Domain Adaptation [94.51284735268597]
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain without using any source data.
CoTTA is easy to implement and can be readily incorporated in off-the-shelf pre-trained models.
arXiv Detail & Related papers (2022-03-25T11:42:02Z) - Data Augmentation through Expert-guided Symmetry Detection to Improve
Performance in Offline Reinforcement Learning [0.0]
offline estimation of the dynamical model of a Markov Decision Process (MDP) is a non-trivial task.
Recent works showed that an expert-guided pipeline relying on Density Estimation methods effectively detects this structure in deterministic environments.
We show that the former results lead to a performance improvement when solving the learned MDP and then applying the optimized policy in the real environment.
arXiv Detail & Related papers (2021-12-18T14:32:32Z) - Gradient Regularized Contrastive Learning for Continual Domain
Adaptation [86.02012896014095]
We study the problem of continual domain adaptation, where the model is presented with a labelled source domain and a sequence of unlabelled target domains.
We propose Gradient Regularized Contrastive Learning (GRCL) to solve the obstacles.
Experiments on Digits, DomainNet and Office-Caltech benchmarks demonstrate the strong performance of our approach.
arXiv Detail & Related papers (2021-03-23T04:10:42Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
We propose a reinforcement learning based selective pseudo-labeling method for semi-supervised domain adaptation.
We develop a deep Q-learning model to select both accurate and representative pseudo-labeled instances.
Our proposed method is evaluated on several benchmark datasets for SSDA, and demonstrates superior performance to all the comparison methods.
arXiv Detail & Related papers (2020-12-07T03:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.