論文の概要: Familiarity-Based Open-Set Recognition Under Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2311.05006v1
- Date: Wed, 8 Nov 2023 20:17:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-10 16:57:42.303040
- Title: Familiarity-Based Open-Set Recognition Under Adversarial Attacks
- Title(参考訳): 敵対的攻撃下での親密性に基づくオープンセット認識
- Authors: Philip Enevoldsen, Christian Gundersen, Nico Lang, Serge Belongie,
Christian Igel
- Abstract要約: 本研究は, False Familiarity と False Novelty の攻撃に対して, 親しみ度スコアに対する勾配に基づく敵対攻撃を示す。
我々は,TinyImageNet上でのインフォームド・インフォームド・セッティングの有効性を評価する。
- 参考スコア(独自算出の注目度): 10.658176736930704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-set recognition (OSR), the identification of novel categories, can be a
critical component when deploying classification models in real-world
applications. Recent work has shown that familiarity-based scoring rules such
as the Maximum Softmax Probability (MSP) or the Maximum Logit Score (MLS) are
strong baselines when the closed-set accuracy is high. However, one of the
potential weaknesses of familiarity-based OSR are adversarial attacks. Here, we
present gradient-based adversarial attacks on familiarity scores for both types
of attacks, False Familiarity and False Novelty attacks, and evaluate their
effectiveness in informed and uninformed settings on TinyImageNet.
- Abstract(参考訳): 新しいカテゴリの識別であるオープンセット認識(osr)は、現実のアプリケーションで分類モデルをデプロイする際に重要な要素となる。
近年の研究では,最大ソフトマックス確率 (MSP) や最大ログスコア (MLS) などの親和性に基づくスコアルールが,クローズドセット精度が高い場合に強いベースラインであることが示されている。
しかし、慣れ親しんだOSRの潜在的な弱点の1つは敵攻撃である。
本稿では,stinyimagenetにおける知識と非情報の両方において,親密度スコアに対する勾配に基づく敵意攻撃,偽親密度,虚新性攻撃,およびそれらの効果を評価する。
関連論文リスト
- PRAT: PRofiling Adversarial aTtacks [52.693011665938734]
PRofiling Adversarial aTacks (PRAT) の新たな問題点について紹介する。
敵対的な例として、PRATの目的は、それを生成するのに使用される攻撃を特定することである。
AIDを用いてPRATの目的のための新しいフレームワークを考案する。
論文 参考訳(メタデータ) (2023-09-20T07:42:51Z) - Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face
Recognition [111.1952945740271]
Adv-Attribute (Adv-Attribute) は、顔認証に対する不明瞭で伝達可能な攻撃を生成するように設計されている。
FFHQとCelebA-HQデータセットの実験は、提案されたAdv-Attributeメソッドが最先端の攻撃成功率を達成することを示している。
論文 参考訳(メタデータ) (2022-10-13T09:56:36Z) - CARBEN: Composite Adversarial Robustness Benchmark [70.05004034081377]
本稿では,複合対向攻撃 (CAA) が画像に与える影響を実証する。
異なるモデルのリアルタイム推論を提供し、攻撃レベルのパラメータの設定を容易にする。
CAAに対する敵対的堅牢性を評価するためのリーダーボードも導入されている。
論文 参考訳(メタデータ) (2022-07-16T01:08:44Z) - On Trace of PGD-Like Adversarial Attacks [77.75152218980605]
敵対的攻撃は、ディープラーニングアプリケーションに対する安全性とセキュリティ上の懸念を引き起こす。
モデルの勾配一貫性を反映した適応応答特性(ARC)特性を構築する。
私たちの方法は直感的で、軽量で、非侵襲的で、データ不要です。
論文 参考訳(メタデータ) (2022-05-19T14:26:50Z) - Evaluation of Neural Networks Defenses and Attacks using NDCG and
Reciprocal Rank Metrics [6.6389732792316]
分類タスクにおけるニューラルネットワークの出力に対する攻撃効果、防衛効果の回復効果を特に測定するために設計された2つの指標を示す。
正規化された累積ゲインと、情報検索文献で使用される相互ランクの指標に着想を得て、ニューラルネットワーク予測を結果のランクリストとして扱う。
一般的な分類指標と比較すると,提案指標は優れた情報的・独特性を示す。
論文 参考訳(メタデータ) (2022-01-10T12:54:45Z) - Membership Inference Attacks From First Principles [24.10746844866869]
メンバシップ推論攻撃では、トレーニングされた機械学習モデルをクエリして、モデルのトレーニングデータセットに特定のサンプルが含まれているかどうかを予測することが可能になる。
これらの攻撃は現在、平均ケースの"精度"メトリクスを使用して評価されており、攻撃がトレーニングセットの任意のメンバを確実に識別できるかどうかを特徴付けることができない。
攻撃は偽陽性率の低い偽陽性率で計算することで評価されるべきであり、このような評価を行った場合、ほとんどの事前攻撃は不十分である。
我々の攻撃は偽陽性率の低いところで10倍強力であり、既存の指標に対する以前の攻撃を厳密に支配している。
論文 参考訳(メタデータ) (2021-12-07T08:47:00Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Adversarially Robust Classification based on GLRT [26.44693169694826]
本稿では,一般確率比検定(GLRT)に基づく防衛戦略について述べる。
GLRT法は, 最悪の攻撃条件下でのミニマックス法と競合することを示す。
また、GLRTディフェンスは、最適ミニマックス分類器が不明なより複雑なモデルに自然に一般化する。
論文 参考訳(メタデータ) (2020-11-16T10:16:05Z) - Unknown Presentation Attack Detection against Rational Attackers [6.351869353952288]
プレゼンテーション攻撃検出とマルチメディア法医学は、まだ実生活環境での攻撃に対して脆弱である。
既存のソリューションの課題には、未知の攻撃の検出、敵の設定での実行能力、数発の学習、説明可能性などがある。
新たな最適化基準が提案され,実環境におけるこれらのシステムの性能向上のための要件が定義されている。
論文 参考訳(メタデータ) (2020-10-04T14:37:10Z) - Adversarial Examples and Metrics [14.068394742881425]
逆の例は、入力の誤分類を引き起こす機械学習(ML)システムに対する攻撃の一種である。
対象距離が不確実な場合のロバスト分類の限界について検討する。
論文 参考訳(メタデータ) (2020-07-14T12:20:53Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
このような攻撃に対して,最先端の歩行認識モデルが脆弱であることを示す。
生成した対向ネットワークに基づくアーキテクチャを用いて、対向的な高品質な歩行シルエットやビデオフレームを意味的に生成する。
実験結果から, フレームの1分の1しか攻撃されない場合, 対象モデルの精度は劇的に低下することがわかった。
論文 参考訳(メタデータ) (2020-02-22T10:08:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。