Latent Task-Specific Graph Network Simulators
- URL: http://arxiv.org/abs/2311.05256v1
- Date: Thu, 9 Nov 2023 10:30:51 GMT
- Title: Latent Task-Specific Graph Network Simulators
- Authors: Philipp Dahlinger, Niklas Freymuth, Michael Volpp, Tai Hoang, Gerhard
Neumann
- Abstract summary: Graph Network Simulators (GNSs) pose an efficient alternative to traditional physics-based simulators.
We frame mesh-based simulation as a meta-learning problem and use a recent Bayesian meta-learning method to improve GNSs adaptability to new scenarios.
We validate the effectiveness of our approach through various experiments, performing on par with or better than established baseline methods.
- Score: 16.881339139068018
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Simulating dynamic physical interactions is a critical challenge across
multiple scientific domains, with applications ranging from robotics to
material science. For mesh-based simulations, Graph Network Simulators (GNSs)
pose an efficient alternative to traditional physics-based simulators. Their
inherent differentiability and speed make them particularly well-suited for
inverse design problems. Yet, adapting to new tasks from limited available data
is an important aspect for real-world applications that current methods
struggle with. We frame mesh-based simulation as a meta-learning problem and
use a recent Bayesian meta-learning method to improve GNSs adaptability to new
scenarios by leveraging context data and handling uncertainties. Our approach,
latent task-specific graph network simulator, uses non-amortized task posterior
approximations to sample latent descriptions of unknown system properties.
Additionally, we leverage movement primitives for efficient full trajectory
prediction, effectively addressing the issue of accumulating errors encountered
by previous auto-regressive methods. We validate the effectiveness of our
approach through various experiments, performing on par with or better than
established baseline methods. Movement primitives further allow us to
accommodate various types of context data, as demonstrated through the
utilization of point clouds during inference. By combining GNSs with
meta-learning, we bring them closer to real-world applicability, particularly
in scenarios with smaller datasets.
Related papers
- Neural Graph Simulator for Complex Systems [0.0]
We introduce the Neural Graph Simulator (NGS) for simulating time-invariant autonomous systems on graphs.
NGS offers significant advantages over numerical solvers by not requiring prior knowledge of governing equations.
It demonstrates superior computational efficiency over conventional methods, improving performance by over $105$ times in stiff problems.
arXiv Detail & Related papers (2024-11-14T01:41:00Z) - Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications [23.94013806312391]
We propose a novel approach that dynamically adjusts simulation environment parameters online using in-context learning.
We validate our approach across two tasks: object scooping and table air hockey.
Our approach delivers efficient and smooth system identification, advancing the deployment of robots in dynamic real-world scenarios.
arXiv Detail & Related papers (2024-10-27T07:13:38Z) - MBDS: A Multi-Body Dynamics Simulation Dataset for Graph Networks Simulators [4.5353840616537555]
Graph Network Simulators (GNS) have emerged as the leading method for modeling physical phenomena.
We have constructed a high-quality physical simulation dataset encompassing 1D, 2D, and 3D scenes.
A key feature of our dataset is the inclusion of precise multi-body dynamics, facilitating a more realistic simulation of the physical world.
arXiv Detail & Related papers (2024-10-04T03:03:06Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkill is a novel framework that uses a differentiable physics simulator for skill abstraction to solve deformable object manipulation tasks.
In particular, we first obtain short-horizon skills using individual tools from a gradient-based simulator.
We then learn a neural skill abstractor from the demonstration trajectories which takes RGBD images as input.
arXiv Detail & Related papers (2022-03-31T17:59:38Z) - Simulating Liquids with Graph Networks [25.013244956897832]
We investigate graph neural networks (GNNs) for learning fluid dynamics.
Our results indicate that learning models, such as GNNs, fail to learn the exact underlying dynamics unless the training set is devoid of any other problem-specific correlations.
arXiv Detail & Related papers (2022-03-14T15:39:27Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - Learning Mesh-Based Simulation with Graph Networks [20.29893312074383]
We introduce MeshGraphNets, a framework for learning mesh-based simulations using graph neural networks.
Our results show it can accurately predict the dynamics of a wide range of physical systems, including aerodynamics, structural mechanics, and cloth.
arXiv Detail & Related papers (2020-10-07T13:34:49Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.