論文の概要: Retinal OCT Synthesis with Denoising Diffusion Probabilistic Models for
Layer Segmentation
- arxiv url: http://arxiv.org/abs/2311.05479v1
- Date: Thu, 9 Nov 2023 16:09:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-10 14:37:54.365789
- Title: Retinal OCT Synthesis with Denoising Diffusion Probabilistic Models for
Layer Segmentation
- Title(参考訳): 層セグメンテーションのための拡散確率モデルによる網膜OCT合成
- Authors: Yuli Wu, Weidong He, Dennis Eschweiler, Ningxin Dou, Zixin Fan,
Shengli Mi, Peter Walter, Johannes Stegmaier
- Abstract要約: 本稿では,拡散確率モデル(DDPM)を用いて網膜光コヒーレンス断層撮影(OCT)画像を自動的に生成する画像合成手法を提案する。
階層分割の精度を一貫して改善し,様々なニューラルネットワークを用いて検証する。
これらの結果から,網膜CT画像の手動アノテーションの必要性が軽減される可能性が示唆された。
- 参考スコア(独自算出の注目度): 2.4113205575263708
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern biomedical image analysis using deep learning often encounters the
challenge of limited annotated data. To overcome this issue, deep generative
models can be employed to synthesize realistic biomedical images. In this
regard, we propose an image synthesis method that utilizes denoising diffusion
probabilistic models (DDPMs) to automatically generate retinal optical
coherence tomography (OCT) images. By providing rough layer sketches, the
trained DDPMs can generate realistic circumpapillary OCT images. We further
find that more accurate pseudo labels can be obtained through knowledge
adaptation, which greatly benefits the segmentation task. Through this, we
observe a consistent improvement in layer segmentation accuracy, which is
validated using various neural networks. Furthermore, we have discovered that a
layer segmentation model trained solely with synthesized images can achieve
comparable results to a model trained exclusively with real images. These
findings demonstrate the promising potential of DDPMs in reducing the need for
manual annotations of retinal OCT images.
- Abstract(参考訳): ディープラーニングを用いた現代の生物医学的画像解析は、しばしば限定的な注釈付きデータの課題に遭遇する。
この問題を克服するために、現実的なバイオメディカル画像の合成に深層生成モデルを用いることができる。
本研究では拡散確率モデル(ddpms)を用いて網膜光コヒーレンス断層撮影(oct)を自動的に生成する画像合成法を提案する。
粗い層スケッチを提供することで、訓練されたDDPMは現実的な乳頭周囲CT画像を生成することができる。
さらに、より正確な擬似ラベルを知識適応によって得ることができ、セグメンテーションタスクに大きなメリットがある。
これにより,階層分割精度が一貫した改善が観察され,様々なニューラルネットワークを用いて検証される。
さらに,合成画像のみを訓練した層分割モデルが,実画像のみを訓練したモデルと同等の結果が得られることを見出した。
これらの結果から,網膜CT画像の手動アノテーションの必要性が軽減される可能性が示唆された。
関連論文リスト
- Neurovascular Segmentation in sOCT with Deep Learning and Synthetic Training Data [4.5276169699857505]
本研究は, 連続断面光コヒーレンストモグラフィー画像における神経血管セグメンテーションのための合成エンジンについて述べる。
提案手法は,ラベル合成とラベル・ツー・イメージ変換の2段階からなる。
前者の有効性を,より現実的なトレーニングラベルの集合と比較し,後者を合成ノイズと人工物モデルのアブレーション研究により実証した。
論文 参考訳(メタデータ) (2024-07-01T16:09:07Z) - Multi-Branch Generative Models for Multichannel Imaging with an Application to PET/CT Synergistic Reconstruction [42.95604565673447]
本稿では,マルチブランチ生成モデルを用いた医用画像の相乗的再構築のための新しい手法を提案する。
我々は,MNIST (Modified National Institute of Standards and Technology) とPET (positron emission tomography) とCT (Computed tomography) の2つのデータセットに対するアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2024-04-12T18:21:08Z) - Paired Diffusion: Generation of related, synthetic PET-CT-Segmentation scans using Linked Denoising Diffusion Probabilistic Models [0.0]
本研究では,複数のPET-CT-腫瘍マスクペアをペアネットワークと条件エンコーダを用いて生成できる新しいアーキテクチャを提案する。
我々のアプローチには、DDPMサンプリング一貫性を改善するための革新的で時間的なステップ制御機構とノイズ探索戦略が含まれる。
論文 参考訳(メタデータ) (2024-03-26T14:21:49Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
本稿では,より高速でリアルなOCTA合成のために,空間コロニー化に基づく網膜血管網の軽量なシミュレーションを行う。
本研究では,3つの公開データセットに対する定量的および定性的実験において,提案手法の優れたセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2023-06-19T14:01:47Z) - CS$^2$: A Controllable and Simultaneous Synthesizer of Images and
Annotations with Minimal Human Intervention [3.465671939864428]
実写画像と対応するアノテーションを同時に生成する新しい制御可能同時合成器(CS$2$)を提案する。
提案するコントリビューションには,1)参照CT画像からスタイル情報と教師なしセグメンテーションマスクから構造情報の両方を受信する条件付き画像合成ネットワーク,2)これらの合成画像を自動的にセグメンテーションする対応するセグメンテーションマスクネットワークがある。
論文 参考訳(メタデータ) (2022-06-20T15:09:10Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
コンディショナル・ジェネレーショナル・ジェネレーティブ・逆境ネットワークは、合成病理像を生成するために応用されている。
そこで我々は,現実的な病理像を合成するために,シャープネスロス正則化生成対向ネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T18:54:25Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。