Reconstructing Objects in-the-wild for Realistic Sensor Simulation
- URL: http://arxiv.org/abs/2311.05602v1
- Date: Thu, 9 Nov 2023 18:58:22 GMT
- Title: Reconstructing Objects in-the-wild for Realistic Sensor Simulation
- Authors: Ze Yang, Sivabalan Manivasagam, Yun Chen, Jingkang Wang, Rui Hu,
Raquel Urtasun
- Abstract summary: We present NeuSim, a novel approach that estimates accurate geometry and realistic appearance from sparse in-the-wild data.
We model the object appearance with a robust physics-inspired reflectance representation effective for in-the-wild data.
Our experiments show that NeuSim has strong view synthesis performance on challenging scenarios with sparse training views.
- Score: 41.55571880832957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing objects from real world data and rendering them at novel views
is critical to bringing realism, diversity and scale to simulation for robotics
training and testing. In this work, we present NeuSim, a novel approach that
estimates accurate geometry and realistic appearance from sparse in-the-wild
data captured at distance and at limited viewpoints. Towards this goal, we
represent the object surface as a neural signed distance function and leverage
both LiDAR and camera sensor data to reconstruct smooth and accurate geometry
and normals. We model the object appearance with a robust physics-inspired
reflectance representation effective for in-the-wild data. Our experiments show
that NeuSim has strong view synthesis performance on challenging scenarios with
sparse training views. Furthermore, we showcase composing NeuSim assets into a
virtual world and generating realistic multi-sensor data for evaluating
self-driving perception models.
Related papers
- Learning autonomous driving from aerial imagery [67.06858775696453]
Photogrammetric simulators allow the synthesis of novel views through the transformation of pre-generated assets into novel views.
We use a Neural Radiance Field (NeRF) as an intermediate representation to synthesize novel views from the point of view of a ground vehicle.
arXiv Detail & Related papers (2024-10-18T05:09:07Z) - URDFormer: A Pipeline for Constructing Articulated Simulation Environments from Real-World Images [39.0780707100513]
We present an integrated end-to-end pipeline that generates simulation scenes complete with articulated kinematic and dynamic structures from real-world images.
In doing so, our work provides both a pipeline for large-scale generation of simulation environments and an integrated system for training robust robotic control policies.
arXiv Detail & Related papers (2024-05-19T20:01:29Z) - Learning Sim-to-Real Dense Object Descriptors for Robotic Manipulation [4.7246285569677315]
We present Sim-to-Real Dense Object Nets (SRDONs), a dense object descriptor that not only understands the object via appropriate representation but also maps simulated and real data to a unified feature space with pixel consistency.
We demonstrate in experiments that pre-trained SRDONs significantly improve performances on unseen objects and unseen visual environments for various robotic tasks with zero real-world training.
arXiv Detail & Related papers (2023-04-18T02:28:55Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - GeoSim: Photorealistic Image Simulation with Geometry-Aware Composition [81.24107630746508]
We present GeoSim, a geometry-aware image composition process that synthesizes novel urban driving scenes.
We first build a diverse bank of 3D objects with both realistic geometry and appearance from sensor data.
The resulting synthetic images are photorealistic, traffic-aware, and geometrically consistent, allowing image simulation to scale to complex use cases.
arXiv Detail & Related papers (2021-01-16T23:00:33Z) - LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World [84.57894492587053]
We develop a novel simulator that captures both the power of physics-based and learning-based simulation.
We first utilize ray casting over the 3D scene and then use a deep neural network to produce deviations from the physics-based simulation.
We showcase LiDARsim's usefulness for perception algorithms-testing on long-tail events and end-to-end closed-loop evaluation on safety-critical scenarios.
arXiv Detail & Related papers (2020-06-16T17:44:35Z) - SurfelGAN: Synthesizing Realistic Sensor Data for Autonomous Driving [27.948417322786575]
We present a simple yet effective approach to generate realistic scenario sensor data.
Our approach uses texture-mapped surfels to efficiently reconstruct the scene from an initial vehicle pass or set of passes.
We then leverage a SurfelGAN network to reconstruct realistic camera images for novel positions and orientations of the self-driving vehicle.
arXiv Detail & Related papers (2020-05-08T04:01:14Z) - SimAug: Learning Robust Representations from Simulation for Trajectory
Prediction [78.91518036949918]
We propose a novel approach to learn robust representation through augmenting the simulation training data.
We show that SimAug achieves promising results on three real-world benchmarks using zero real training data.
arXiv Detail & Related papers (2020-04-04T21:22:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.