Learning Sim-to-Real Dense Object Descriptors for Robotic Manipulation
- URL: http://arxiv.org/abs/2304.08703v1
- Date: Tue, 18 Apr 2023 02:28:55 GMT
- Title: Learning Sim-to-Real Dense Object Descriptors for Robotic Manipulation
- Authors: Hoang-Giang Cao, Weihao Zeng, I-Chen Wu
- Abstract summary: We present Sim-to-Real Dense Object Nets (SRDONs), a dense object descriptor that not only understands the object via appropriate representation but also maps simulated and real data to a unified feature space with pixel consistency.
We demonstrate in experiments that pre-trained SRDONs significantly improve performances on unseen objects and unseen visual environments for various robotic tasks with zero real-world training.
- Score: 4.7246285569677315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is crucial to address the following issues for ubiquitous robotics
manipulation applications: (a) vision-based manipulation tasks require the
robot to visually learn and understand the object with rich information like
dense object descriptors; and (b) sim-to-real transfer in robotics aims to
close the gap between simulated and real data. In this paper, we present
Sim-to-Real Dense Object Nets (SRDONs), a dense object descriptor that not only
understands the object via appropriate representation but also maps simulated
and real data to a unified feature space with pixel consistency. We proposed an
object-to-object matching method for image pairs from different scenes and
different domains. This method helps reduce the effort of training data from
real-world by taking advantage of public datasets, such as GraspNet. With
sim-to-real object representation consistency, our SRDONs can serve as a
building block for a variety of sim-to-real manipulation tasks. We demonstrate
in experiments that pre-trained SRDONs significantly improve performances on
unseen objects and unseen visual environments for various robotic tasks with
zero real-world training.
Related papers
- Structured Spatial Reasoning with Open Vocabulary Object Detectors [2.089191490381739]
Reasoning about spatial relationships between objects is essential for many real-world robotic tasks.
We introduce a structured probabilistic approach that integrates rich 3D geometric features with state-of-the-art open-vocabulary object detectors.
The approach is evaluated and compared against zero-shot performance of the state-of-the-art Vision and Language Models (VLMs) on spatial reasoning tasks.
arXiv Detail & Related papers (2024-10-09T19:37:01Z) - SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - RPMArt: Towards Robust Perception and Manipulation for Articulated Objects [56.73978941406907]
We propose a framework towards Robust Perception and Manipulation for Articulated Objects ( RPMArt)
RPMArt learns to estimate the articulation parameters and manipulate the articulation part from the noisy point cloud.
We introduce an articulation-aware classification scheme to enhance its ability for sim-to-real transfer.
arXiv Detail & Related papers (2024-03-24T05:55:39Z) - Reconstructing Objects in-the-wild for Realistic Sensor Simulation [41.55571880832957]
We present NeuSim, a novel approach that estimates accurate geometry and realistic appearance from sparse in-the-wild data.
We model the object appearance with a robust physics-inspired reflectance representation effective for in-the-wild data.
Our experiments show that NeuSim has strong view synthesis performance on challenging scenarios with sparse training views.
arXiv Detail & Related papers (2023-11-09T18:58:22Z) - Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly [55.41644538483948]
We present an industrial application case that uses sim2real transfer learning for point cloud data.
We provide insights on how to generate and process synthetic point cloud data.
A novel patch-based attention network is proposed additionally to tackle this problem.
arXiv Detail & Related papers (2023-01-12T14:00:37Z) - Visuomotor Control in Multi-Object Scenes Using Object-Aware
Representations [25.33452947179541]
We show the effectiveness of object-aware representation learning techniques for robotic tasks.
Our model learns control policies in a sample-efficient manner and outperforms state-of-the-art object techniques.
arXiv Detail & Related papers (2022-05-12T19:48:11Z) - Lifelong Ensemble Learning based on Multiple Representations for
Few-Shot Object Recognition [6.282068591820947]
We present a lifelong ensemble learning approach based on multiple representations to address the few-shot object recognition problem.
To facilitate lifelong learning, each approach is equipped with a memory unit for storing and retrieving object information instantly.
We have performed extensive sets of experiments to assess the performance of the proposed approach in offline, and open-ended scenarios.
arXiv Detail & Related papers (2022-05-04T10:29:10Z) - IFOR: Iterative Flow Minimization for Robotic Object Rearrangement [92.97142696891727]
IFOR, Iterative Flow Minimization for Robotic Object Rearrangement, is an end-to-end method for the problem of object rearrangement for unknown objects.
We show that our method applies to cluttered scenes, and in the real world, while training only on synthetic data.
arXiv Detail & Related papers (2022-02-01T20:03:56Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.