Diffusion-Generative Multi-Fidelity Learning for Physical Simulation
- URL: http://arxiv.org/abs/2311.05606v1
- Date: Thu, 9 Nov 2023 18:59:05 GMT
- Title: Diffusion-Generative Multi-Fidelity Learning for Physical Simulation
- Authors: Zheng Wang, Shibo Li, Shikai Fang, Shandian Zhe
- Abstract summary: We develop a diffusion-generative multi-fidelity learning method based on differential equations (SDE), where the generation is a continuous denoising process.
By conditioning on additional inputs (temporal or spacial variables), our model can efficiently learn and predict multi-dimensional solution arrays.
- Score: 24.723536390322582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-fidelity surrogate learning is important for physical simulation
related applications in that it avoids running numerical solvers from scratch,
which is known to be costly, and it uses multi-fidelity examples for training
and greatly reduces the cost of data collection. Despite the variety of
existing methods, they all build a model to map the input parameters outright
to the solution output. Inspired by the recent breakthrough in generative
models, we take an alternative view and consider the solution output as
generated from random noises. We develop a diffusion-generative multi-fidelity
(DGMF) learning method based on stochastic differential equations (SDE), where
the generation is a continuous denoising process. We propose a conditional
score model to control the solution generation by the input parameters and the
fidelity. By conditioning on additional inputs (temporal or spacial variables),
our model can efficiently learn and predict multi-dimensional solution arrays.
Our method naturally unifies discrete and continuous fidelity modeling. The
advantage of our method in several typical applications shows a promising new
direction for multi-fidelity learning.
Related papers
- Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of deep generative models.
They rely on sequential denoising steps during sample generation.
We propose a novel method that integrates denoising phases directly into the model's architecture.
arXiv Detail & Related papers (2024-05-31T08:19:44Z) - Multi-fidelity Gaussian process surrogate modeling for regression problems in physics [0.0]
Multi-fidelity methods provide a solution by chaining models in a hierarchy with increasing fidelity.
We show that multi-fidelity methods generally have a smaller prediction error for the same computational cost as compared to the single-fidelity method.
arXiv Detail & Related papers (2024-04-18T07:52:12Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Disentangled Multi-Fidelity Deep Bayesian Active Learning [19.031567953748453]
Multi-fidelity active learning aims to learn a direct mapping from input parameters to simulation outputs at the highest fidelity.
Deep learning-based methods often impose a hierarchical structure in hidden representations, which only supports passing information from low-fidelity to high-fidelity.
We propose a novel framework called Disentangled Multi-fidelity Deep Bayesian Active Learning (D-MFDAL), which learns the surrogate models conditioned on the distribution of functions at multiple fidelities.
arXiv Detail & Related papers (2023-05-07T23:14:58Z) - Infinite-Fidelity Coregionalization for Physical Simulation [22.524773932668023]
Multi-fidelity modeling and learning are important in physical simulation-related applications.
We propose Infinite Fidelity Coregionalization (IFC) to exploit rich information within continuous, infinite fidelities.
We show the advantage of our method in several benchmark tasks in computational physics.
arXiv Detail & Related papers (2022-07-01T23:01:10Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
We propose a novel framework for conditional generation in multimodal spaces.
It uses latent variables to model generalizable learning patterns.
At inference, the latent variables are optimized to find optimal solutions corresponding to multiple output modes.
arXiv Detail & Related papers (2020-10-07T03:11:34Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Enhancement of shock-capturing methods via machine learning [0.0]
We develop an improved finite-volume method for simulating PDEs with discontinuous solutions.
We train a neural network to improve the results of a fifth-order WENO method.
We find that our method outperforms WENO in simulations where the numerical solution becomes overly diffused.
arXiv Detail & Related papers (2020-02-06T21:51:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.