Multi-fidelity Hierarchical Neural Processes
- URL: http://arxiv.org/abs/2206.04872v1
- Date: Fri, 10 Jun 2022 04:54:13 GMT
- Title: Multi-fidelity Hierarchical Neural Processes
- Authors: Dongxia Wu, Matteo Chinazzi, Alessandro Vespignani, Yi-An Ma, Rose Yu
- Abstract summary: Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
- Score: 79.0284780825048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Science and engineering fields use computer simulation extensively. These
simulations are often run at multiple levels of sophistication to balance
accuracy and efficiency. Multi-fidelity surrogate modeling reduces the
computational cost by fusing different simulation outputs. Cheap data generated
from low-fidelity simulators can be combined with limited high-quality data
generated by an expensive high-fidelity simulator. Existing methods based on
Gaussian processes rely on strong assumptions of the kernel functions and can
hardly scale to high-dimensional settings. We propose Multi-fidelity
Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model
for multi-fidelity surrogate modeling. MF-HNP inherits the flexibility and
scalability of Neural Processes. The latent variables transform the
correlations among different fidelity levels from observations to latent space.
The predictions across fidelities are conditionally independent given the
latent states. It helps alleviate the error propagation issue in existing
methods. MF-HNP is flexible enough to handle non-nested high dimensional data
at different fidelity levels with varying input and output dimensions. We
evaluate MF-HNP on epidemiology and climate modeling tasks, achieving
competitive performance in terms of accuracy and uncertainty estimation. In
contrast to deep Gaussian Processes with only low-dimensional (< 10) tasks, our
method shows great promise for speeding up high-dimensional complex simulations
(over 7000 for epidemiology modeling and 45000 for climate modeling).
Related papers
- Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling [19.60087366873302]
Multi-fidelity surrogate modeling aims to learn an accurate surrogate at the highest fidelity level.
Deep learning approaches utilize neural network based encoders and decoders to improve scalability.
We propose Multi-fidelity Residual Neural Processes (MFRNP), a novel multi-fidelity surrogate modeling framework.
arXiv Detail & Related papers (2024-02-29T04:40:25Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
In drug discovery, molecular dynamics simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding.
We show the efficiency and effectiveness of NeuralMD, with a 2000$times$ speedup over standard numerical MD simulation and outperforming all other ML approaches by up to 80% under the stability metric.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Multi-fidelity Fourier Neural Operator for Fast Modeling of Large-Scale
Geological Carbon Storage [0.0]
We propose to use a multi-fidelity Fourier neural operator (FNO) to solve large-scale carbon storage problems.
We first test the model efficacy on a GCS reservoir model being discretized into 110k grid cells.
The multi-fidelity model can predict with accuracy comparable to a high-fidelity model trained with the same amount of high-fidelity data with 81% less data generation costs.
arXiv Detail & Related papers (2023-08-17T17:44:59Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Disentangled Multi-Fidelity Deep Bayesian Active Learning [19.031567953748453]
Multi-fidelity active learning aims to learn a direct mapping from input parameters to simulation outputs at the highest fidelity.
Deep learning-based methods often impose a hierarchical structure in hidden representations, which only supports passing information from low-fidelity to high-fidelity.
We propose a novel framework called Disentangled Multi-fidelity Deep Bayesian Active Learning (D-MFDAL), which learns the surrogate models conditioned on the distribution of functions at multiple fidelities.
arXiv Detail & Related papers (2023-05-07T23:14:58Z) - Multi-fidelity surrogate modeling using long short-term memory networks [0.0]
We introduce a novel data-driven framework of multi-fidelity surrogate modeling for parametrized, time-dependent problems.
We show that the proposed multi-fidelity LSTM networks not only improve single-fidelity regression significantly, but also outperform the multi-fidelity models based on feed-forward neural networks.
arXiv Detail & Related papers (2022-08-05T12:05:02Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
In this work, we explore the idea of multiscale modeling with machine learning and employ DeepONet, a neural operator, as an efficient surrogate of the expensive solver.
DeepONet is trained offline using data acquired from the fine solver for learning the underlying and possibly unknown fine-scale dynamics.
We present various benchmarks to assess accuracy and speedup, and in particular we develop a coupling algorithm for a time-dependent problem.
arXiv Detail & Related papers (2022-02-25T20:46:08Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.