Efficient Parallelization Layouts for Large-Scale Distributed Model Training
- URL: http://arxiv.org/abs/2311.05610v3
- Date: Tue, 24 Sep 2024 15:42:51 GMT
- Title: Efficient Parallelization Layouts for Large-Scale Distributed Model Training
- Authors: Johannes Hagemann, Samuel Weinbach, Konstantin Dobler, Maximilian Schall, Gerard de Melo,
- Abstract summary: We conduct a comprehensive study of possible training configurations for large language models.
We find that using a micro-batch size of 1 usually enables the most efficient training layouts.
Our most efficient configurations enable us to achieve state-of-the-art training efficiency results over a range of model sizes.
- Score: 17.16249954009967
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficiently training large language models requires parallelizing across hundreds of hardware accelerators and invoking various compute and memory optimizations. When combined, many of these strategies have complex interactions regarding the final training efficiency. Prior work tackling this problem did not have access to the latest set of optimizations, such as FlashAttention or sequence parallelism. In this work, we conduct a comprehensive ablation study of possible training configurations for large language models. We distill this large study into several key recommendations for the most efficient training. For instance, we find that using a micro-batch size of 1 usually enables the most efficient training layouts. Larger micro-batch sizes necessitate activation checkpointing or higher degrees of model parallelism and also lead to larger pipeline bubbles. Our most efficient configurations enable us to achieve state-of-the-art training efficiency results over a range of model sizes, most notably a Model FLOPs utilization of 70.5% when training a Llama 13B model.
Related papers
- Hardware Scaling Trends and Diminishing Returns in Large-Scale Distributed Training [29.44470664154098]
We show that careful consideration of hardware configuration and parallelization strategy is critical for effective scaling of model size, training data, and total computation.
We conduct an extensive empirical study of the performance of large-scale LLM training workloads across model size, hardware configurations, and distributed parallelization strategies.
arXiv Detail & Related papers (2024-11-20T06:05:11Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - CoLLiE: Collaborative Training of Large Language Models in an Efficient
Way [59.09824823710863]
CoLLiE is an efficient library that facilitates collaborative training of large language models.
With its modular design and comprehensive functionality, CoLLiE offers a balanced blend of efficiency, ease of use, and customization.
arXiv Detail & Related papers (2023-12-01T08:02:16Z) - Training Large Language Models Efficiently with Sparsity and Dataflow [3.1780195670658378]
This paper demonstrates an end-to-end training flow on a large language model - 13 billion GPT - using sparsity and dataflow.
We show that we can successfully train GPT 13B to the same quality as the dense GPT 13B model, while achieving an end-end speedup of 4.5x over dense A100 baseline.
arXiv Detail & Related papers (2023-04-11T21:37:13Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
Deep learning applications benefit from using large models with billions of parameters.
Training these models is notoriously expensive due to the need for specialized HPC clusters.
We consider alternative setups for training large models: using cheap "preemptible" instances or pooling existing resources from multiple regions.
arXiv Detail & Related papers (2023-01-27T18:55:19Z) - MoESys: A Distributed and Efficient Mixture-of-Experts Training and Inference System for Internet Services [32.278096820269816]
We present a novel MoESys that boosts efficiency in both large-scale training and inference.
Specifically, in the training procedure, the proposed MoESys adopts an Elastic MoE training strategy with 2D prefetch and Fusion communication over Hierarchical storage.
For scalable inference in a single node, MoESys builds the CPU-GPU memory jointly into a ring of sections to load the model, and executes the computation tasks across the memory sections in a round-robin manner for efficient inference.
arXiv Detail & Related papers (2022-05-20T09:09:27Z) - M6-10T: A Sharing-Delinking Paradigm for Efficient Multi-Trillion
Parameter Pretraining [55.16088793437898]
Training extreme-scale models requires enormous amounts of computes and memory footprint.
We propose a simple training strategy called "Pseudo-to-Real" for high-memory-footprint-required large models.
arXiv Detail & Related papers (2021-10-08T04:24:51Z) - TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale
Language Models [60.23234205219347]
TeraPipe is a high-performance token-level pipeline parallel algorithm for synchronous model-parallel training of Transformer-based language models.
We show that TeraPipe can speed up the training by 5.0x for the largest GPT-3 model with 175 billion parameters on an AWS cluster.
arXiv Detail & Related papers (2021-02-16T07:34:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.