Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion
- URL: http://arxiv.org/abs/2406.09770v1
- Date: Fri, 14 Jun 2024 07:16:18 GMT
- Title: Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion
- Authors: Anke Tang, Li Shen, Yong Luo, Shiwei Liu, Han Hu, Bo Du,
- Abstract summary: Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
- Score: 53.33473557562837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost of training and evaluating models. Efficient Pareto front approximation of large models enables multi-objective optimization for various tasks such as multi-task learning and trade-off analysis. Existing algorithms for learning Pareto set, including (1) evolutionary, hypernetworks, and hypervolume-maximization methods, are computationally expensive and have restricted scalability to large models; (2) Scalarization algorithms, where a separate model is trained for each objective ray, which is inefficient for learning the entire Pareto set and fails to capture the objective trade-offs effectively. Inspired by the recent success of model merging, we propose a practical and scalable approach to Pareto set learning problem via mixture of experts (MoE) based model fusion. By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives and closely approximate the entire Pareto set of large neural networks. Once the routers are learned and a preference vector is set, the MoE module can be unloaded, thus no additional computational cost is introduced during inference. We conduct extensive experiments on vision and language tasks using large-scale models such as CLIP-ViT and GPT-2. The experimental results demonstrate that our method efficiently approximates the entire Pareto front of large models. Using only hundreds of trainable parameters of the MoE routers, our method even has lower memory usage compared to linear scalarization and algorithms that learn a single Pareto optimal solution, and are scalable to both the number of objectives and the size of the model.
Related papers
- MAP: Low-compute Model Merging with Amortized Pareto Fronts via Quadratic Approximation [80.47072100963017]
We introduce a novel and low-compute algorithm, Model Merging with Amortized Pareto Front (MAP)
MAP efficiently identifies a set of scaling coefficients for merging multiple models, reflecting the trade-offs involved.
We also introduce Bayesian MAP for scenarios with a relatively low number of tasks and Nested MAP for situations with a high number of tasks, further reducing the computational cost of evaluation.
arXiv Detail & Related papers (2024-06-11T17:55:25Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Pareto Manifold Learning: Tackling multiple tasks via ensembles of
single-task models [50.33956216274694]
In Multi-Task Learning (MTL), tasks may compete and limit the performance achieved on each other, rather than guiding the optimization to a solution.
We propose textitPareto Manifold Learning, an ensembling method in weight space.
arXiv Detail & Related papers (2022-10-18T11:20:54Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
Multiobjective optimization (MOCO) problems can be found in many real-world applications.
We develop a learning-based approach to approximate the whole Pareto set for a given MOCO problem without further search procedure.
Our proposed method significantly outperforms some other methods on the multiobjective traveling salesman problem, multiconditioned vehicle routing problem and multi knapsack problem in terms of solution quality, speed, and model efficiency.
arXiv Detail & Related papers (2022-03-29T09:26:22Z) - Rethinking Pareto Frontier for Performance Evaluation of Deep Neural
Networks [2.167843405313757]
We re-define the efficiency measure using a multi-objective optimization.
We combine competing variables with nature simultaneously in a single relative efficiency measure.
This allows to rank deep models that run efficiently on different computing hardware, and combines inference efficiency with training efficiency objectively.
arXiv Detail & Related papers (2022-02-18T15:58:17Z) - Multi-Task Learning on Networks [0.0]
Multi-objective optimization problems arising in the multi-task learning context have specific features and require adhoc methods.
In this thesis the solutions in the Input Space are represented as probability distributions encapsulating the knowledge contained in the function evaluations.
In this space of probability distributions, endowed with the metric given by the Wasserstein distance, a new algorithm MOEA/WST can be designed in which the model is not directly on the objective function.
arXiv Detail & Related papers (2021-12-07T09:13:10Z) - Pareto Navigation Gradient Descent: a First-Order Algorithm for
Optimization in Pareto Set [17.617944390196286]
Modern machine learning applications, such as multi-task learning, require finding optimal model parameters to trade-off multiple objective functions.
We propose a first-order algorithm that approximately solves OPT-in-Pareto using only gradient information.
arXiv Detail & Related papers (2021-10-17T04:07:04Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.