Real-time Control of Electric Autonomous Mobility-on-Demand Systems via Graph Reinforcement Learning
- URL: http://arxiv.org/abs/2311.05780v2
- Date: Thu, 4 Apr 2024 01:43:42 GMT
- Title: Real-time Control of Electric Autonomous Mobility-on-Demand Systems via Graph Reinforcement Learning
- Authors: Aaryan Singhal, Daniele Gammelli, Justin Luke, Karthik Gopalakrishnan, Dominik Helmreich, Marco Pavone,
- Abstract summary: Electric Autonomous Mobility-on-Demand (E-AMoD) fleets need to make several real-time decisions.
We present the E-AMoD control problem through the lens of reinforcement learning.
We propose a graph network-based framework to achieve drastically improved scalability and superior performance overoptimals.
- Score: 14.073588678179865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Operators of Electric Autonomous Mobility-on-Demand (E-AMoD) fleets need to make several real-time decisions such as matching available vehicles to ride requests, rebalancing idle vehicles to areas of high demand, and charging vehicles to ensure sufficient range. While this problem can be posed as a linear program that optimizes flows over a space-charge-time graph, the size of the resulting optimization problem does not allow for real-time implementation in realistic settings. In this work, we present the E-AMoD control problem through the lens of reinforcement learning and propose a graph network-based framework to achieve drastically improved scalability and superior performance over heuristics. Specifically, we adopt a bi-level formulation where we (1) leverage a graph network-based RL agent to specify a desired next state in the space-charge graph, and (2) solve more tractable linear programs to best achieve the desired state while ensuring feasibility. Experiments using real-world data from San Francisco and New York City show that our approach achieves up to 89% of the profits of the theoretically-optimal solution while achieving more than a 100x speedup in computational time. We further highlight promising zero-shot transfer capabilities of our learned policy on tasks such as inter-city generalization and service area expansion, thus showing the utility, scalability, and flexibility of our framework. Finally, our approach outperforms the best domain-specific heuristics with comparable runtimes, with an increase in profits by up to 3.2x.
Related papers
- Efficient Motion Prediction: A Lightweight & Accurate Trajectory Prediction Model With Fast Training and Inference Speed [56.27022390372502]
We propose a new efficient motion prediction model, which achieves highly competitive benchmark results while training only a few hours on a single GPU.
Its low inference latency makes it particularly suitable for deployment in autonomous applications with limited computing resources.
arXiv Detail & Related papers (2024-09-24T14:58:27Z) - A Graph-based Adversarial Imitation Learning Framework for Reliable & Realtime Fleet Scheduling in Urban Air Mobility [5.19664437943693]
This paper presents a comprehensive optimization formulation of the fleet scheduling problem.
It also identifies the need for alternate solution approaches.
The new imitative approach achieves better mean performance and remarkable improvement in the case of unseen worst-case scenarios.
arXiv Detail & Related papers (2024-07-16T18:51:24Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with
Online Learning [60.17407932691429]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.
We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.
We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - DClEVerNet: Deep Combinatorial Learning for Efficient EV Charging
Scheduling in Large-scale Networked Facilities [5.78463306498655]
Electric vehicles (EVs) might stress distribution networks significantly, leaving their performance degraded and jeopardized stability.
Modern power grids require coordinated or smart'' charging strategies capable of optimizing EV charging scheduling in a scalable and efficient fashion.
We formulate a time-coupled binary optimization problem that maximizes EV users' total welfare gain while accounting for the network's available power capacity and stations' occupancy limits.
arXiv Detail & Related papers (2023-05-18T14:03:47Z) - An ASP Framework for Efficient Urban Traffic Optimization [0.0]
This paper presents a framework which allows to efficiently simulate and optimize traffic flow in a large roads' network with hundreds of vehicles.
The framework leverages on an Answer Set Programming (ASP) encoding to formally describe the movements of vehicles inside a network.
It is then possible to optimize the routes of vehicles inside the network to reduce a range of relevant metrics.
arXiv Detail & Related papers (2022-08-05T10:50:38Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z) - Reinforcement Learning-based Dynamic Service Placement in Vehicular
Networks [4.010371060637208]
complexity of traffic mobility patterns and dynamics in the requests for different types of services has made service placement a challenging task.
A typical static placement solution is not effective as it does not consider the traffic mobility and service dynamics.
We propose a reinforcement learning-based dynamic (RL-Dynamic) service placement framework to find the optimal placement of services at the edge servers.
arXiv Detail & Related papers (2021-05-31T15:01:35Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.