Scalable Vehicle Re-Identification via Self-Supervision
- URL: http://arxiv.org/abs/2205.07613v1
- Date: Mon, 16 May 2022 12:14:42 GMT
- Title: Scalable Vehicle Re-Identification via Self-Supervision
- Authors: Pirazh Khorramshahi, Vineet Shenoy, Rama Chellappa
- Abstract summary: Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
- Score: 66.2562538902156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Computer Vision technologies become more mature for intelligent
transportation applications, it is time to ask how efficient and scalable they
are for large-scale and real-time deployment. Among these technologies is
Vehicle Re-Identification which is one of the key elements in city-scale
vehicle analytics systems. Many state-of-the-art solutions for vehicle re-id
mostly focus on improving the accuracy on existing re-id benchmarks and often
ignore computational complexity. To balance the demands of accuracy and
computational efficiency, in this work we propose a simple yet effective hybrid
solution empowered by self-supervised training which only uses a single network
during inference time and is free of intricate and computation-demanding add-on
modules often seen in state-of-the-art approaches. Through extensive
experiments, we show our approach, termed Self-Supervised and Boosted VEhicle
Re-Identification (SSBVER), is on par with state-of-the-art alternatives in
terms of accuracy without introducing any additional overhead during
deployment. Additionally we show that our approach, generalizes to different
backbone architectures which facilitates various resource constraints and
consistently results in a significant accuracy boost.
Related papers
- Self-Supervised State Space Model for Real-Time Traffic Accident Prediction Using eKAN Networks [18.385759762991896]
SSL-eKamba is an efficient self-supervised framework for traffic accident prediction.
To enhance generalization, we design two self-supervised auxiliary tasks that adaptively improve traffic pattern representation.
Experiments on two real-world datasets demonstrate that SSL-eKamba consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-09-09T14:25:51Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.
We propose a novel approach to address this issue at test time without requiring retraining.
MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - CCDSReFormer: Traffic Flow Prediction with a Criss-Crossed Dual-Stream Enhanced Rectified Transformer Model [32.45713037210818]
We introduce Criss-Crossed Dual-Stream Enhanced Rectified Transformer model (CCDSReFormer)
It includes three innovative modules: Enhanced Rectified Spatial Self-attention (ReSSA), Enhanced Rectified Delay Aware Self-attention (ReDASA) and Enhanced Rectified Temporal Self-attention (ReTSA)
These modules aim to lower computational needs via sparse attention, focus on local information for better traffic dynamics understanding, and merge spatial and temporal insights through a unique learning method.
arXiv Detail & Related papers (2024-03-26T14:43:57Z) - Real-time Traffic Object Detection for Autonomous Driving [5.780326596446099]
Modern computer vision techniques tend to prioritize accuracy over efficiency.
Existing object detectors are far from being real-time.
We propose a more suitable alternative that incorporates real-time requirements.
arXiv Detail & Related papers (2024-01-31T19:12:56Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Pushing the Limits of Learning-based Traversability Analysis for
Autonomous Driving on CPU [1.841057463340778]
This paper proposes and evaluates a real-time machine learning-based Traversability Analysis method.
We show that integrating a new set of geometric and visual features and focusing on important implementation details enables a noticeable boost in performance and reliability.
The proposed approach has been compared with state-of-the-art Deep Learning approaches on a public dataset of outdoor driving scenarios.
arXiv Detail & Related papers (2022-06-07T07:57:34Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Pluggable Weakly-Supervised Cross-View Learning for Accurate Vehicle
Re-Identification [53.6218051770131]
Cross-view consistent feature representation is key for accurate vehicle ReID.
Existing approaches resort to supervised cross-view learning using extensive extra viewpoints annotations.
We present a pluggable Weakly-supervised Cross-View Learning (WCVL) module for vehicle ReID.
arXiv Detail & Related papers (2021-03-09T11:51:09Z) - Fast Approximate Solutions using Reinforcement Learning for Dynamic
Capacitated Vehicle Routing with Time Windows [3.5232085374661284]
This paper develops an inherently parallelised, fast, approximate learning-based solution to the generic class of Capacitated Vehicle Routing with Time Windows and Dynamic Routing (CVRP-TWDR)
Considering vehicles in a fleet as decentralised agents, we postulate that using reinforcement learning (RL) based adaptation is a key enabler for real-time route formation in a dynamic environment.
arXiv Detail & Related papers (2021-02-24T06:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.