CFBenchmark: Chinese Financial Assistant Benchmark for Large Language Model
- URL: http://arxiv.org/abs/2311.05812v2
- Date: Tue, 21 May 2024 08:37:05 GMT
- Title: CFBenchmark: Chinese Financial Assistant Benchmark for Large Language Model
- Authors: Yang Lei, Jiangtong Li, Dawei Cheng, Zhijun Ding, Changjun Jiang,
- Abstract summary: Large language models (LLMs) have demonstrated great potential in the financial domain.
In this work, we introduce CFBenchmark, to evaluate the performance of LLMs for Chinese financial assistant.
- Score: 22.127509074325324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated great potential in the financial domain. Thus, it becomes important to assess the performance of LLMs in the financial tasks. In this work, we introduce CFBenchmark, to evaluate the performance of LLMs for Chinese financial assistant. The basic version of CFBenchmark is designed to evaluate the basic ability in Chinese financial text processing from three aspects~(\emph{i.e.} recognition, classification, and generation) including eight tasks, and includes financial texts ranging in length from 50 to over 1,800 characters. We conduct experiments on several LLMs available in the literature with CFBenchmark-Basic, and the experimental results indicate that while some LLMs show outstanding performance in specific tasks, overall, there is still significant room for improvement in basic tasks of financial text processing with existing models. In the future, we plan to explore the advanced version of CFBenchmark, aiming to further explore the extensive capabilities of language models in more profound dimensions as a financial assistant in Chinese. Our codes are released at https://github.com/TongjiFinLab/CFBenchmark.
Related papers
- Golden Touchstone: A Comprehensive Bilingual Benchmark for Evaluating Financial Large Language Models [22.594428755214356]
"Golden Touchstone" is the first comprehensive bilingual benchmark for financial LLMs.
benchmarks include a variety of financial tasks aimed at thoroughly assessing models' language understanding and generation capabilities.
We open-sourced Touchstone-GPT, a financial LLM trained through continual pre-training and financial instruction tuning.
arXiv Detail & Related papers (2024-11-09T20:09:11Z) - CFinBench: A Comprehensive Chinese Financial Benchmark for Large Language Models [61.324062412648075]
CFinBench is an evaluation benchmark for assessing the financial knowledge of large language models (LLMs) under Chinese context.
It comprises 99,100 questions spanning 43 second-level categories with 3 question types: single-choice, multiple-choice and judgment.
The results show that GPT4 and some Chinese-oriented models lead the benchmark, with the highest average accuracy being 60.16%.
arXiv Detail & Related papers (2024-07-02T14:34:36Z) - SuperCLUE-Fin: Graded Fine-Grained Analysis of Chinese LLMs on Diverse Financial Tasks and Applications [17.34850312139675]
SC-Fin is a pioneering evaluation framework tailored for Chinese-native financial large language models (FLMs)
It assesses FLMs across six financial application domains and twenty-five specialized tasks.
Using multi-turn, open-ended conversations that mimic real-life scenarios, SC-Fin measures models on a range of criteria.
arXiv Detail & Related papers (2024-04-29T19:04:35Z) - CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models [53.9835961434552]
We introduce the Chinese Instruction-Following Benchmark (CIF-Bench) to evaluate the generalizability of large language models (LLMs) to the Chinese language.
CIF-Bench comprises 150 tasks and 15,000 input-output pairs, developed by native speakers to test complex reasoning and Chinese cultural nuances.
To mitigate data contamination, we release only half of the dataset publicly, with the remainder kept private, and introduce diversified instructions to minimize score variance.
arXiv Detail & Related papers (2024-02-20T16:02:12Z) - D\'olares or Dollars? Unraveling the Bilingual Prowess of Financial LLMs
Between Spanish and English [67.48541936784501]
Tois'on de Oro is the first framework that establishes instruction datasets, finetuned LLMs, and evaluation benchmark for financial LLMs in Spanish joint with English.
We construct a rigorously curated bilingual instruction dataset including over 144K Spanish and English samples from 15 datasets covering 7 tasks.
We evaluate our model and existing LLMs using FLARE-ES, the first comprehensive bilingual evaluation benchmark with 21 datasets covering 9 tasks.
arXiv Detail & Related papers (2024-02-12T04:50:31Z) - DISC-FinLLM: A Chinese Financial Large Language Model based on Multiple
Experts Fine-tuning [74.99318727786337]
We propose Multiple Experts Fine-tuning Framework to build a financial large language model (LLM)
We build a financial instruction-tuning dataset named DISC-FIN-SFT, including instruction samples of four categories (consulting, NLP tasks, computing and retrieval-augmented generation)
Evaluations conducted on multiple benchmarks demonstrate that our model performs better than baseline models in various financial scenarios.
arXiv Detail & Related papers (2023-10-23T11:33:41Z) - Is ChatGPT a Financial Expert? Evaluating Language Models on Financial
Natural Language Processing [22.754757518792395]
FinLMEval is a framework for Financial Language Model Evaluation.
This study compares the performance of encoder-only language models and the decoder-only language models.
arXiv Detail & Related papers (2023-10-19T11:43:15Z) - CMMLU: Measuring massive multitask language understanding in Chinese [133.70911295934746]
This paper introduces a comprehensive Chinese benchmark that covers various subjects, including natural science, social sciences, engineering, and humanities.
CMMLU fills the gap in evaluating the knowledge and reasoning capabilities of large language models within the Chinese context.
arXiv Detail & Related papers (2023-06-15T15:49:51Z) - PIXIU: A Large Language Model, Instruction Data and Evaluation Benchmark
for Finance [63.51545277822702]
PIXIU is a comprehensive framework including the first financial large language model (LLMs) based on fine-tuning LLaMA with instruction data.
We propose FinMA by fine-tuning LLaMA with the constructed dataset to be able to follow instructions for various financial tasks.
We conduct a detailed analysis of FinMA and several existing LLMs, uncovering their strengths and weaknesses in handling critical financial tasks.
arXiv Detail & Related papers (2023-06-08T14:20:29Z) - WHEN FLUE MEETS FLANG: Benchmarks and Large Pre-trained Language Model
for Financial Domain [42.093876880881886]
We propose a novel domain specific Financial LANGuage model (FLANG)
It uses financial keywords and phrases for better masking, together with span boundary objective and in-filing objective.
Our models, code and benchmark data are publicly available on Github and Huggingface.
arXiv Detail & Related papers (2022-10-31T18:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.