CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models
- URL: http://arxiv.org/abs/2402.13109v2
- Date: Tue, 4 Jun 2024 14:26:30 GMT
- Title: CIF-Bench: A Chinese Instruction-Following Benchmark for Evaluating the Generalizability of Large Language Models
- Authors: Yizhi LI, Ge Zhang, Xingwei Qu, Jiali Li, Zhaoqun Li, Zekun Wang, Hao Li, Ruibin Yuan, Yinghao Ma, Kai Zhang, Wangchunshu Zhou, Yiming Liang, Lei Zhang, Lei Ma, Jiajun Zhang, Zuowen Li, Stephen W. Huang, Chenghua Lin, Jie Fu,
- Abstract summary: We introduce the Chinese Instruction-Following Benchmark (CIF-Bench) to evaluate the generalizability of large language models (LLMs) to the Chinese language.
CIF-Bench comprises 150 tasks and 15,000 input-output pairs, developed by native speakers to test complex reasoning and Chinese cultural nuances.
To mitigate data contamination, we release only half of the dataset publicly, with the remainder kept private, and introduce diversified instructions to minimize score variance.
- Score: 53.9835961434552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of large language models (LLMs) has enhanced the ability to generalize across a wide range of unseen natural language processing (NLP) tasks through instruction-following. Yet, their effectiveness often diminishes in low-resource languages like Chinese, exacerbated by biased evaluations from data leakage, casting doubt on their true generalizability to new linguistic territories. In response, we introduce the Chinese Instruction-Following Benchmark (CIF-Bench), designed to evaluate the zero-shot generalizability of LLMs to the Chinese language. CIF-Bench comprises 150 tasks and 15,000 input-output pairs, developed by native speakers to test complex reasoning and Chinese cultural nuances across 20 categories. To mitigate data contamination, we release only half of the dataset publicly, with the remainder kept private, and introduce diversified instructions to minimize score variance, totaling 45,000 data instances. Our evaluation of 28 selected LLMs reveals a noticeable performance gap, with the best model scoring only 52.9%, highlighting the limitations of LLMs in less familiar language and task contexts. This work not only uncovers the current limitations of LLMs in handling Chinese language tasks but also sets a new standard for future LLM generalizability research, pushing towards the development of more adaptable, culturally informed, and linguistically diverse models.
Related papers
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.
Currently, instruction-tuned large language models (LLMs) excel at various English tasks.
Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - LLMs Beyond English: Scaling the Multilingual Capability of LLMs with Cross-Lingual Feedback [61.23008372927665]
We introduce xLLMs-100, which scales the multilingual capabilities of LLaMA and BLOOM to 100 languages.
We evaluate the multilingual understanding and generating capabilities of xLLMs-100 on five multilingual benchmarks.
arXiv Detail & Related papers (2024-06-03T20:25:12Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - PLUG: Leveraging Pivot Language in Cross-Lingual Instruction Tuning [46.153828074152436]
We propose a pivot language guided generation approach to enhance instruction tuning in lower-resource languages.
It trains the model to first process instructions in the pivot language, and then produce responses in the target language.
Our approach demonstrates a significant improvement in the instruction-following abilities of LLMs by 29% on average.
arXiv Detail & Related papers (2023-11-15T05:28:07Z) - Are Large Language Model-based Evaluators the Solution to Scaling Up
Multilingual Evaluation? [20.476500441734427]
Large Language Models (LLMs) excel in various Natural Language Processing (NLP) tasks.
Their evaluation, particularly in languages beyond the top $20$, remains inadequate due to existing benchmarks and metrics limitations.
arXiv Detail & Related papers (2023-09-14T06:41:58Z) - CARE-MI: Chinese Benchmark for Misinformation Evaluation in Maternity
and Infant Care [14.326936563564171]
We present a benchmark, CARE-MI, for evaluating misinformation in large language models (LLMs)
Our proposed benchmark fills the gap between the extensive usage of LLMs and the lack of datasets for assessing the misinformation generated by these models.
Using our benchmark, we conduct extensive experiments and found that current Chinese LLMs are far from perfect in the topic of maternity and infant care.
arXiv Detail & Related papers (2023-07-04T03:34:19Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - CMMLU: Measuring massive multitask language understanding in Chinese [133.70911295934746]
This paper introduces a comprehensive Chinese benchmark that covers various subjects, including natural science, social sciences, engineering, and humanities.
CMMLU fills the gap in evaluating the knowledge and reasoning capabilities of large language models within the Chinese context.
arXiv Detail & Related papers (2023-06-15T15:49:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.