Inter-object Discriminative Graph Modeling for Indoor Scene Recognition
- URL: http://arxiv.org/abs/2311.05919v3
- Date: Fri, 1 Mar 2024 03:38:40 GMT
- Title: Inter-object Discriminative Graph Modeling for Indoor Scene Recognition
- Authors: Chuanxin Song, Hanbo Wu, Xin Ma
- Abstract summary: We propose to leverage discriminative object knowledge to enhance scene feature representations.
We construct a Discriminative Graph Network (DGN) in which pixel-level scene features are defined as nodes.
With the proposed IODP and DGN, we obtain state-of-the-art results on several widely used scene datasets.
- Score: 5.712940060321454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variable scene layouts and coexisting objects across scenes make indoor scene
recognition still a challenging task. Leveraging object information within
scenes to enhance the distinguishability of feature representations has emerged
as a key approach in this domain. Currently, most object-assisted methods use a
separate branch to process object information, combining object and scene
features heuristically. However, few of them pay attention to interpretably
handle the hidden discriminative knowledge within object information. In this
paper, we propose to leverage discriminative object knowledge to enhance scene
feature representations. Initially, we capture the object-scene discriminative
relationships from a probabilistic perspective, which are transformed into an
Inter-Object Discriminative Prototype (IODP). Given the abundant prior
knowledge from IODP, we subsequently construct a Discriminative Graph Network
(DGN), in which pixel-level scene features are defined as nodes and the
discriminative relationships between node features are encoded as edges. DGN
aims to incorporate inter-object discriminative knowledge into the image
representation through graph convolution and mapping operations (GCN). With the
proposed IODP and DGN, we obtain state-of-the-art results on several widely
used scene datasets, demonstrating the effectiveness of the proposed approach.
Related papers
- Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
We propose a hierarchical graph interaction network termed HGINet for camouflaged object detection.
The network is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features.
Our experiments demonstrate the superior performance of HGINet compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2024-08-27T12:53:25Z) - Exploiting Object-based and Segmentation-based Semantic Features for Deep Learning-based Indoor Scene Classification [0.5572976467442564]
The work described in this paper uses both semantic information, obtained from object detection, and semantic segmentation techniques.
A novel approach that uses a semantic segmentation mask to provide Hu-moments-based segmentation categories' shape characterization, designated by Hu-Moments Features (SHMFs) is proposed.
A three-main-branch network, designated by GOS$2$F$2$App, that exploits deep-learning-based global features, object-based features, and semantic segmentation-based features is also proposed.
arXiv Detail & Related papers (2024-04-11T13:37:51Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Learning-based Relational Object Matching Across Views [63.63338392484501]
We propose a learning-based approach which combines local keypoints with novel object-level features for matching object detections between RGB images.
We train our object-level matching features based on appearance and inter-frame and cross-frame spatial relations between objects in an associative graph neural network.
arXiv Detail & Related papers (2023-05-03T19:36:51Z) - Framework-agnostic Semantically-aware Global Reasoning for Segmentation [29.69187816377079]
We propose a component that learns to project image features into latent representations and reason between them.
Our design encourages the latent regions to represent semantic concepts by ensuring that the activated regions are spatially disjoint.
Our latent tokens are semantically interpretable and diverse and provide a rich set of features that can be transferred to downstream tasks.
arXiv Detail & Related papers (2022-12-06T21:42:05Z) - DisPositioNet: Disentangled Pose and Identity in Semantic Image
Manipulation [83.51882381294357]
DisPositioNet is a model that learns a disentangled representation for each object for the task of image manipulation using scene graphs.
Our framework enables the disentanglement of the variational latent embeddings as well as the feature representation in the graph.
arXiv Detail & Related papers (2022-11-10T11:47:37Z) - SR-GNN: Spatial Relation-aware Graph Neural Network for Fine-Grained
Image Categorization [24.286426387100423]
We propose a method that captures subtle changes by aggregating context-aware features from most relevant image-regions.
Our approach is inspired by the recent advancement in self-attention and graph neural networks (GNNs)
It outperforms the state-of-the-art approaches by a significant margin in recognition accuracy.
arXiv Detail & Related papers (2022-09-05T19:43:15Z) - Self-Supervised Video Object Segmentation via Cutout Prediction and
Tagging [117.73967303377381]
We propose a novel self-supervised Video Object (VOS) approach that strives to achieve better object-background discriminability.
Our approach is based on a discriminative learning loss formulation that takes into account both object and background information.
Our proposed approach, CT-VOS, achieves state-of-the-art results on two challenging benchmarks: DAVIS-2017 and Youtube-VOS.
arXiv Detail & Related papers (2022-04-22T17:53:27Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.