Aggregation Weighting of Federated Learning via Generalization Bound
Estimation
- URL: http://arxiv.org/abs/2311.05936v1
- Date: Fri, 10 Nov 2023 08:50:28 GMT
- Title: Aggregation Weighting of Federated Learning via Generalization Bound
Estimation
- Authors: Mingwei Xu, Xiaofeng Cao, Ivor W.Tsang, and James T.Kwok
- Abstract summary: Federated Learning (FL) typically aggregates client model parameters using a weighting approach determined by sample proportions.
We replace the aforementioned weighting method with a new strategy that considers the generalization bounds of each local model.
- Score: 65.8630966842025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) typically aggregates client model parameters using a
weighting approach determined by sample proportions. However, this naive
weighting method may lead to unfairness and degradation in model performance
due to statistical heterogeneity and the inclusion of noisy data among clients.
Theoretically, distributional robustness analysis has shown that the
generalization performance of a learning model with respect to any shifted
distribution is bounded. This motivates us to reconsider the weighting approach
in federated learning. In this paper, we replace the aforementioned weighting
method with a new strategy that considers the generalization bounds of each
local model. Specifically, we estimate the upper and lower bounds of the
second-order origin moment of the shifted distribution for the current local
model, and then use these bounds disagreements as the aggregation proportions
for weightings in each communication round. Experiments demonstrate that the
proposed weighting strategy significantly improves the performance of several
representative FL algorithms on benchmark datasets.
Related papers
- On Sampling Strategies for Spectral Model Sharding [7.185534285278903]
In this work, we present two sampling strategies for such sharding.
The first produces unbiased estimators of the original weights, while the second aims to minimize the squared approximation error.
We demonstrate that both of these methods can lead to improved performance on various commonly used datasets.
arXiv Detail & Related papers (2024-10-31T16:37:25Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Vanishing Variance Problem in Fully Decentralized Neural-Network Systems [0.8212195887472242]
Federated learning and gossip learning are emerging methodologies designed to mitigate data privacy concerns.
Our research introduces a variance-corrected model averaging algorithm.
Our simulation results demonstrate that our approach enables gossip learning to achieve convergence efficiency comparable to that of federated learning.
arXiv Detail & Related papers (2024-04-06T12:49:20Z) - Every Parameter Matters: Ensuring the Convergence of Federated Learning
with Dynamic Heterogeneous Models Reduction [22.567754688492414]
Cross-device Federated Learning (FL) faces significant challenges where low-end clients that could potentially make unique contributions are excluded from training large models due to their resource bottlenecks.
Recent research efforts have focused on model-heterogeneous FL, by extracting reduced-size models from the global model and applying them to local clients accordingly.
This paper presents a unifying framework for heterogeneous FL algorithms with online model extraction and provides a general convergence analysis for the first time.
arXiv Detail & Related papers (2023-10-12T19:07:58Z) - Ensemble Modeling for Multimodal Visual Action Recognition [50.38638300332429]
We propose an ensemble modeling approach for multimodal action recognition.
We independently train individual modality models using a variant of focal loss tailored to handle the long-tailed distribution of the MECCANO [21] dataset.
arXiv Detail & Related papers (2023-08-10T08:43:20Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
Federated learning has been recently proposed for distributed model training at the edge.
This paper presents a complete general mathematical convergence analysis to evaluate aggregation strategies in a federated learning framework.
We derive novel aggregation algorithms which are able to modify their model architecture by differentiating client contributions according to the value of their losses.
arXiv Detail & Related papers (2022-05-22T16:37:53Z) - Optimal Model Averaging: Towards Personalized Collaborative Learning [0.0]
In federated learning, differences in the data or objectives between the participating nodes motivate approaches to train a personalized machine learning model for each node.
One such approach is weighted averaging between a locally trained model and the global model.
We find that there is always some positive amount of model averaging that reduces the expected squared error compared to the local model.
arXiv Detail & Related papers (2021-10-25T13:33:20Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.