Plasma Surrogate Modelling using Fourier Neural Operators
- URL: http://arxiv.org/abs/2311.05967v2
- Date: Tue, 18 Jun 2024 16:46:44 GMT
- Title: Plasma Surrogate Modelling using Fourier Neural Operators
- Authors: Vignesh Gopakumar, Stanislas Pamela, Lorenzo Zanisi, Zongyi Li, Ander Gray, Daniel Brennand, Nitesh Bhatia, Gregory Stathopoulos, Matt Kusner, Marc Peter Deisenroth, Anima Anandkumar, JOREK Team, MAST Team,
- Abstract summary: Predicting plasma evolution within a Tokamak reactor is crucial to realizing the goal of sustainable fusion.
We demonstrate accurate predictions of evolution plasma using deep learning-based surrogate modelling tools, viz., Neural Operators (FNO)
We show that FNO has a speedup of six orders of magnitude over traditional solvers in predicting the plasma dynamics simulated from magnetohydrodynamic models.
FNOs can also predict plasma evolution on real-world experimental data observed by the cameras positioned within the MAST Tokamak.
- Score: 57.52074029826172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting plasma evolution within a Tokamak reactor is crucial to realizing the goal of sustainable fusion. Capabilities in forecasting the spatio-temporal evolution of plasma rapidly and accurately allow us to quickly iterate over design and control strategies on current Tokamak devices and future reactors. Modelling plasma evolution using numerical solvers is often expensive, consuming many hours on supercomputers, and hence, we need alternative inexpensive surrogate models. We demonstrate accurate predictions of plasma evolution both in simulation and experimental domains using deep learning-based surrogate modelling tools, viz., Fourier Neural Operators (FNO). We show that FNO has a speedup of six orders of magnitude over traditional solvers in predicting the plasma dynamics simulated from magnetohydrodynamic models, while maintaining a high accuracy (MSE in the normalised domain $\approx$ $10^{-5}$). Our modified version of the FNO is capable of solving multi-variable Partial Differential Equations (PDE), and can capture the dependence among the different variables in a single model. FNOs can also predict plasma evolution on real-world experimental data observed by the cameras positioned within the MAST Tokamak, i.e., cameras looking across the central solenoid and the divertor in the Tokamak. We show that FNOs are able to accurately forecast the evolution of plasma and have the potential to be deployed for real-time monitoring. We also illustrate their capability in forecasting the plasma shape, the locations of interactions of the plasma with the central solenoid and the divertor for the full (available) duration of the plasma shot within MAST. The FNO offers a viable alternative for surrogate modelling as it is quick to train and infer, and requires fewer data points, while being able to do zero-shot super-resolution and getting high-fidelity solutions.
Related papers
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Accelerating Phase Field Simulations Through a Hybrid Adaptive Fourier Neural Operator with U-Net Backbone [0.7329200485567827]
We propose U-Shaped Adaptive Fourier Neural Operators (U-AFNO), a machine learning (ML) model inspired by recent advances in neural operator learning.
We use U-AFNOs to learn the dynamics mapping the field at a current time step into a later time step.
Our model reproduces the key micro-structure statistics and QoIs with a level of accuracy on-par with the high-fidelity numerical solver.
arXiv Detail & Related papers (2024-06-24T20:13:23Z) - Data-driven local operator finding for reduced-order modelling of plasma
systems: I. Concept and verifications [2.9320342785886973]
Reduced-order plasma models can efficiently predict plasma behavior across various settings and configurations.
We introduce the "Phi Method" in this two-part article.
Part I presents this novel algorithm, which employs constrained regression on a candidate term library.
Part II will delve into the method's application for parametric dynamics discovery.
arXiv Detail & Related papers (2024-03-03T14:50:15Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Hybridizing Physics and Neural ODEs for Predicting Plasma Inductance
Dynamics in Tokamak Fusion Reactors [0.0]
We train both physics-based and neural network models on data from the Alcator C-Mod fusion reactor.
We find that a model that combines physics-based equations with a neural ODE performs better than both existing physics-motivated ODEs and a pure neural ODE model.
arXiv Detail & Related papers (2023-10-30T23:25:54Z) - Learning the dynamics of a one-dimensional plasma model with graph neural networks [0.0]
We show that our model learns the kinetic plasma dynamics of the one-dimensional plasma model.
We compare the performance against the original plasma model in terms of run-time, conservation laws, and temporal evolution of key physical quantities.
arXiv Detail & Related papers (2023-10-26T17:58:12Z) - Fast Dynamic 1D Simulation of Divertor Plasmas with Neural PDE
Surrogates [3.6443770850509423]
Managing divertor plasmas is crucial for operating reactor scale tokamak devices due to heat and particle flux constraints on the divertor target.
We address this lack of fast simulators using neural PDE surrogates, data-driven neural network-based surrogate models trained using solutions generated with a classical numerical method.
We simulate a realistic TCV divertor plasma with dynamics induced by upstream density ramps and provide an exploratory outlook towards fast transients.
arXiv Detail & Related papers (2023-05-30T11:20:14Z) - Unsupervised Discovery of Inertial-Fusion Plasma Physics using
Differentiable Kinetic Simulations and a Maximum Entropy Loss Function [77.34726150561087]
We create a differentiable solver for the plasma kinetics 3D partial-differential-equation and introduce a domain-specific objective function.
We apply this framework to an inertial-fusion relevant configuration and find that the optimization process exploits a novel physical effect.
arXiv Detail & Related papers (2022-06-03T15:27:33Z) - Learning Generative Vision Transformer with Energy-Based Latent Space
for Saliency Prediction [51.80191416661064]
We propose a novel vision transformer with latent variables following an informative energy-based prior for salient object detection.
Both the vision transformer network and the energy-based prior model are jointly trained via Markov chain Monte Carlo-based maximum likelihood estimation.
With the generative vision transformer, we can easily obtain a pixel-wise uncertainty map from an image, which indicates the model confidence in predicting saliency from the image.
arXiv Detail & Related papers (2021-12-27T06:04:33Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.