5D Neural Surrogates for Nonlinear Gyrokinetic Simulations of Plasma Turbulence
- URL: http://arxiv.org/abs/2502.07469v1
- Date: Tue, 11 Feb 2025 11:25:10 GMT
- Title: 5D Neural Surrogates for Nonlinear Gyrokinetic Simulations of Plasma Turbulence
- Authors: Gianluca Galletti, Fabian Paischer, Paul Setinek, William Hornsby, Lorenzo Zanisi, Naomi Carey, Stanislas Pamela, Johannes Brandstetter,
- Abstract summary: We propose a method for training neural surrogates for 5D gyrokinetic simulations.
Our method extends a hierarchical vision transformer to five dimensions and is trained on the 5D distribution function for the adiabatic electron approximation.
Our work paves the way towards neural surrogates for plasma turbulence simulations to accelerate deployment of commercial energy production via nuclear fusion.
- Score: 9.788870512075171
- License:
- Abstract: Nuclear fusion plays a pivotal role in the quest for reliable and sustainable energy production. A major roadblock to achieving commercially viable fusion power is understanding plasma turbulence, which can significantly degrade plasma confinement. Modelling turbulence is crucial to design performing plasma scenarios for next-generation reactor-class devices and current experimental machines. The nonlinear gyrokinetic equation underpinning turbulence modelling evolves a 5D distribution function over time. Solving this equation numerically is extremely expensive, requiring up to weeks for a single run to converge, making it unfeasible for iterative optimisation and control studies. In this work, we propose a method for training neural surrogates for 5D gyrokinetic simulations. Our method extends a hierarchical vision transformer to five dimensions and is trained on the 5D distribution function for the adiabatic electron approximation. We demonstrate that our model can accurately infer downstream physical quantities such as heat flux time trace and electrostatic potentials for single-step predictions two orders of magnitude faster than numerical codes. Our work paves the way towards neural surrogates for plasma turbulence simulations to accelerate deployment of commercial energy production via nuclear fusion.
Related papers
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Application of Neural Ordinary Differential Equations for ITER Burning Plasma Dynamics [0.0]
The dynamics of burning plasmas in tokamaks are crucial for advancing controlled thermonuclear fusion.
This study applies the NeuralPlasmaODE to simulate the complex energy transfer processes in ITER deuterium-tritium (D-T) plasmas.
arXiv Detail & Related papers (2024-08-26T16:47:20Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
This work introduces a 4D generative diffusion model and a physics-informed guidance technique that enables the generation of realistic sequences of flow states.
Our findings indicate that the proposed method can successfully sample entire subsequences from the turbulent manifold.
This advancement opens doors for the application of generative modeling in analyzing the temporal evolution of turbulent flows.
arXiv Detail & Related papers (2024-06-17T10:21:01Z) - Plasma Surrogate Modelling using Fourier Neural Operators [57.52074029826172]
Predicting plasma evolution within a Tokamak reactor is crucial to realizing the goal of sustainable fusion.
We demonstrate accurate predictions of evolution plasma using deep learning-based surrogate modelling tools, viz., Neural Operators (FNO)
We show that FNO has a speedup of six orders of magnitude over traditional solvers in predicting the plasma dynamics simulated from magnetohydrodynamic models.
FNOs can also predict plasma evolution on real-world experimental data observed by the cameras positioned within the MAST Tokamak.
arXiv Detail & Related papers (2023-11-10T10:05:00Z) - Hybridizing Physics and Neural ODEs for Predicting Plasma Inductance
Dynamics in Tokamak Fusion Reactors [0.0]
We train both physics-based and neural network models on data from the Alcator C-Mod fusion reactor.
We find that a model that combines physics-based equations with a neural ODE performs better than both existing physics-motivated ODEs and a pure neural ODE model.
arXiv Detail & Related papers (2023-10-30T23:25:54Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Unsupervised Discovery of Inertial-Fusion Plasma Physics using
Differentiable Kinetic Simulations and a Maximum Entropy Loss Function [77.34726150561087]
We create a differentiable solver for the plasma kinetics 3D partial-differential-equation and introduce a domain-specific objective function.
We apply this framework to an inertial-fusion relevant configuration and find that the optimization process exploits a novel physical effect.
arXiv Detail & Related papers (2022-06-03T15:27:33Z) - Turbulent field fluctuations in gyrokinetic and fluid plasmas [0.0]
Key uncertainty in the design and development of magnetic confinement fusion energy reactors is predicting edge plasma turbulence.
Drift-reduced Braginskii two-fluid theory is one such set of reduced equations that has for decades simulated boundary plasmas in experiment.
We demonstrate the first ever direct quantitative comparisons of turbulent field fluctuations between electrostatic two-fluid theory and electromagnetic gyrokinetic modelling.
arXiv Detail & Related papers (2021-07-20T19:50:30Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.