論文の概要: Privacy-Preserving Individual-Level COVID-19 Infection Prediction via
Federated Graph Learning
- arxiv url: http://arxiv.org/abs/2311.06049v1
- Date: Fri, 10 Nov 2023 13:22:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 15:03:39.511873
- Title: Privacy-Preserving Individual-Level COVID-19 Infection Prediction via
Federated Graph Learning
- Title(参考訳): フェデレーショングラフ学習による個人レベルウイルス感染予測のプライバシ保護
- Authors: Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, Tao Jiang
- Abstract要約: 我々は、フェデレートラーニング(FL)とグラフニューラルネットワーク(GNN)に基づく、プライバシ保護のための個人レベルの感染予測フレームワークの開発に注力する。
本稿では,プライバシ保護のためのフェデレート・グラフ学習手法であるFalconを提案する。
我々の手法は最先端のアルゴリズムより優れており、ユーザのプライバシーを実際のプライバシ攻撃から保護することができる。
- 参考スコア(独自算出の注目度): 33.77030569632993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately predicting individual-level infection state is of great value
since its essential role in reducing the damage of the epidemic. However, there
exists an inescapable risk of privacy leakage in the fine-grained user mobility
trajectories required by individual-level infection prediction. In this paper,
we focus on developing a framework of privacy-preserving individual-level
infection prediction based on federated learning (FL) and graph neural networks
(GNN). We propose Falcon, a Federated grAph Learning method for
privacy-preserving individual-level infeCtion predictiON. It utilizes a novel
hypergraph structure with spatio-temporal hyperedges to describe the complex
interactions between individuals and locations in the contagion process. By
organically combining the FL framework with hypergraph neural networks, the
information propagation process of the graph machine learning is able to be
divided into two stages distributed on the server and the clients,
respectively, so as to effectively protect user privacy while transmitting
high-level information. Furthermore, it elaborately designs a differential
privacy perturbation mechanism as well as a plausible pseudo location
generation approach to preserve user privacy in the graph structure. Besides,
it introduces a cooperative coupling mechanism between the individual-level
prediction model and an additional region-level model to mitigate the
detrimental impacts caused by the injected obfuscation mechanisms. Extensive
experimental results show that our methodology outperforms state-of-the-art
algorithms and is able to protect user privacy against actual privacy attacks.
Our code and datasets are available at the link:
https://github.com/wjfu99/FL-epidemic.
- Abstract(参考訳): 個別の感染状況の正確な予測は、感染の被害を減らすのに不可欠な役割であるため、非常に重要である。
しかし,個人レベルの感染予測が要求する細粒度のユーザモビリティトラジェクタでは,プライバシの漏えいリスクは避けられない。
本稿では,フェデレートラーニング(FL)とグラフニューラルネットワーク(GNN)に基づく,プライバシ保護のための個人レベルの感染予測フレームワークの開発に焦点をあてる。
プライバシを保全する個人レベルの感染予測のためのフェデレーショングラフ学習手法であるfalconを提案する。
空間的ハイパーエッジを持つ新しいハイパーグラフ構造を用いて、感染過程における個人と場所の間の複雑な相互作用を記述する。
flフレームワークとハイパーグラフニューラルネットワークを有機的に結合することにより、グラフ機械学習の情報伝達プロセスは、サーバとクライアントに分散した2つのステージに分割され、高レベルの情報を送信しながらユーザのプライバシを効果的に保護することができる。
さらに,ユーザプライバシをグラフ構造に保持するための,差分プライバシー摂動機構と,疑似位置情報生成手法を精巧に設計した。
さらに, 個別レベル予測モデルと追加領域レベルモデルとの協調結合機構を導入し, 注入された難読化機構による有害影響を緩和する。
広範な実験結果から,本手法は最先端アルゴリズムよりも優れており,ユーザのプライバシを実際のプライバシ攻撃から保護できることがわかった。
私たちのコードとデータセットはリンクで利用可能です。
関連論文リスト
- Privacy-Preserving Heterogeneous Federated Learning for Sensitive Healthcare Data [12.30620268528346]
我々は、AAFV(Abstention-Aware Federated Voting)と呼ばれる新しいフレームワークを提案する。
AAFVは、データのプライバシを同時に保護しながら、共同で機密的に異質なローカルモデルをトレーニングすることができる。
特に,提案手法では,不均一な局所モデルから高信頼投票を選択するために,しきい値に基づく棄権方式を採用している。
論文 参考訳(メタデータ) (2024-06-15T08:43:40Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
我々は、最悪の近傍データセット上でのモデル分布間のKLばらつきのプライバシー境界を証明した。
このKLプライバシー境界は、トレーニング中にモデルパラメータに対して期待される2乗勾配ノルムによって決定される。
論文 参考訳(メタデータ) (2023-10-31T16:13:22Z) - Local Differential Privacy in Graph Neural Networks: a Reconstruction
Approach [18.57176144101623]
ユーザレベルでノードのプライバシを提供するための学習フレームワークを提案する。
我々は、分散化された微分プライバシーの概念、すなわちローカル微分プライバシに焦点を当てる。
摂動データから特徴やラベルを近似する再構成手法を開発した。
論文 参考訳(メタデータ) (2023-09-15T17:35:51Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - Privacy-Preserved Neural Graph Similarity Learning [99.78599103903777]
本稿では,グラフ類似性学習のためのプライバシ保存型ニューラルグラフマッチングネットワークモデルPPGMを提案する。
再構成攻撃を防ぐため、提案モデルではデバイス間でノードレベルの表現を通信しない。
グラフプロパティに対する攻撃を軽減するため、両方のベクトルの情報を含む難読化機能は通信される。
論文 参考訳(メタデータ) (2022-10-21T04:38:25Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
我々は、複数のユーザ/エージェントからエッジサーバへの勾配更新をOtA(Over-the-Air)で送信することで、無線フェデレーション学習のプライバシー面を考察する。
従来の摂動に基づく手法は、トレーニングの精度を犠牲にしてプライバシー保護を提供する。
本研究では,エッジサーバにおけるプライバシリークの最小化とモデル精度の低下を目標とする。
論文 参考訳(メタデータ) (2022-10-05T13:13:35Z) - Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation [25.95411320126426]
ソーシャルネットワークは、ディープラーニングの技術進歩を伴う異種グラフニューラルネットワーク(HGNN)であると考えられている。
本稿では,HeteDPと呼ばれる差分プライバシー機構に基づく,新しい異種グラフニューラルネットワークのプライバシ保存手法を提案する。
論文 参考訳(メタデータ) (2022-10-02T14:41:02Z) - BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine
Learning [0.0]
我々は、N-party Federated Learningのための最初のブロックチェーンベースのフレームワークBEASを紹介する。
グラデーションプルーニングを使用したトレーニングデータの厳格なプライバシー保証を提供する。
異常検出プロトコルは、データ汚染攻撃のリスクを最小限に抑えるために使用される。
また、異種学習環境における早期収束を防止するための新しいプロトコルも定義する。
論文 参考訳(メタデータ) (2022-02-06T17:11:14Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。