論文の概要: Enhancing Rock Image Segmentation in Digital Rock Physics: A Fusion of
Generative AI and State-of-the-Art Neural Networks
- arxiv url: http://arxiv.org/abs/2311.06079v1
- Date: Fri, 10 Nov 2023 14:24:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 14:51:02.563925
- Title: Enhancing Rock Image Segmentation in Digital Rock Physics: A Fusion of
Generative AI and State-of-the-Art Neural Networks
- Title(参考訳): ディジタルロック物理における岩石画像分割の強化:生成AIと最先端ニューラルネットワークの融合
- Authors: Zhaoyang Ma, Xupeng He, Hyung Kwak, Jun Gao, Shuyu Sun, Bicheng Yan
- Abstract要約: デジタル・ロック物理学において、CTとSEMスキャンから微細構造を分析することは、ポーシティーや細孔接続性などの特性を推定するために重要である。
しきい値やCNNのような従来のセグメンテーション手法は、しばしば岩の微細構造を正確に詳細に記述するに足りず、ノイズを生じやすい。
U-Netはセグメンテーションの精度を改善したが、複雑な細孔形状のため、多くの専門家による注釈付きサンプルを必要とした。
我々の研究は、これらの制限を克服するために、高度な生成AIモデルである拡散モデルを用いていた。
TransU-Netは、デジタルロック物理学の新しい標準を設定し、将来の地球科学と工学のブレークスルーの道を開く。
- 参考スコア(独自算出の注目度): 5.089732183029123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In digital rock physics, analysing microstructures from CT and SEM scans is
crucial for estimating properties like porosity and pore connectivity.
Traditional segmentation methods like thresholding and CNNs often fall short in
accurately detailing rock microstructures and are prone to noise. U-Net
improved segmentation accuracy but required many expert-annotated samples, a
laborious and error-prone process due to complex pore shapes. Our study
employed an advanced generative AI model, the diffusion model, to overcome
these limitations. This model generated a vast dataset of CT/SEM and binary
segmentation pairs from a small initial dataset. We assessed the efficacy of
three neural networks: U-Net, Attention-U-net, and TransUNet, for segmenting
these enhanced images. The diffusion model proved to be an effective data
augmentation technique, improving the generalization and robustness of deep
learning models. TransU-Net, incorporating Transformer structures, demonstrated
superior segmentation accuracy and IoU metrics, outperforming both U-Net and
Attention-U-net. Our research advances rock image segmentation by combining the
diffusion model with cutting-edge neural networks, reducing dependency on
extensive expert data and boosting segmentation accuracy and robustness.
TransU-Net sets a new standard in digital rock physics, paving the way for
future geoscience and engineering breakthroughs.
- Abstract(参考訳): デジタル岩石物理学において、ctおよびsemスキャンによる微細構造の分析は、細孔性や細孔接続性などの特性の推定に不可欠である。
しきい値やCNNのような従来のセグメンテーション手法は、しばしば岩の微細構造を正確に詳細に記述するに足りず、ノイズを生じやすい。
U-Netはセグメンテーションの精度を改善したが、複雑な細孔形状のため、多くの専門家による注釈付きサンプルを必要とした。
我々の研究は、これらの制限を克服するために、高度な生成AIモデルである拡散モデルを使用した。
このモデルは、小さな初期データセットから、CT/SEMとバイナリセグメンテーションペアの膨大なデータセットを生成した。
U-Net, Attention-U-net, TransUNetの3つのニューラルネットワークによる画像分割の有効性を検討した。
拡散モデルは, 深層学習モデルの一般化とロバスト性を向上し, 効果的なデータ拡張手法であることが証明された。
Transformer構造を取り入れたTransU-Netは、セグメンテーション精度とIoUメトリクスが優れており、U-NetとAttention-U-netの両方を上回っている。
本研究では, 拡散モデルと最先端ニューラルネットワークを組み合わせることにより, 広範なエキスパートデータへの依存性を低減し, セグメンテーション精度とロバスト性を高めることにより, 岩盤画像のセグメンテーションを向上させる。
transu-netはデジタル岩石物理学の新しい標準を定め、将来の地球科学と工学のブレークスルーへの道を開く。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - CCDepth: A Lightweight Self-supervised Depth Estimation Network with Enhanced Interpretability [11.076431337488973]
本研究では,畳み込みニューラルネットワーク(CNN)とホワイトボックスCRATEネットワークを組み合わせた,ハイブリッド型自己教師型深度推定ネットワークCCDepthを提案する。
このネットワークは,CNNとCRATEモジュールを用いて画像中の局所的およびグローバルな情報を抽出し,学習効率の向上とモデルサイズ削減を実現する。
論文 参考訳(メタデータ) (2024-09-30T04:19:40Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Impact of Scaled Image on Robustness of Deep Neural Networks [0.0]
生画像のスケーリングはアウト・オブ・ディストリビューションデータを生成するため、ネットワークを騙すための敵攻撃の可能性がある。
本研究では,ImageNet Challengeデータセットのサブセットを複数でスケーリングすることで,Scaling-DistortionデータセットのImageNet-CSを提案する。
論文 参考訳(メタデータ) (2022-09-02T08:06:58Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - EEG-ITNet: An Explainable Inception Temporal Convolutional Network for
Motor Imagery Classification [0.5616884466478884]
我々はEEG-ITNetと呼ばれるエンドツーエンドのディープラーニングアーキテクチャを提案する。
本モデルでは,多チャンネル脳波信号からスペクトル,空間,時間情報を抽出することができる。
EEG-ITNetは、異なるシナリオにおける分類精度を最大5.9%改善する。
論文 参考訳(メタデータ) (2022-04-14T13:18:43Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Physical Accuracy of Deep Neural Networks for 2D and 3D Multi-Mineral
Segmentation of Rock micro-CT Images [0.0]
4つのCNNアーキテクチャのパフォーマンスは、10の構成で2Dおよび3Dケースでテストされる。
新しいネットワークアーキテクチャはU-netとResNetのハイブリッド統合として導入され、Net-in-Network構成の短いスキップ接続と長いスキップ接続を組み合わせたものである。
3D実装は、他のテストされたモデル全てをボクセルワイズと物理的精度で上回っている。
論文 参考訳(メタデータ) (2020-02-13T03:14:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。