論文の概要: GRAM: An Interpretable Approach for Graph Anomaly Detection using Gradient Attention Maps
- arxiv url: http://arxiv.org/abs/2311.06153v2
- Date: Wed, 26 Jun 2024 20:24:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 20:16:23.303071
- Title: GRAM: An Interpretable Approach for Graph Anomaly Detection using Gradient Attention Maps
- Title(参考訳): GRAM:グラディエントアテンションマップを用いたグラフ異常検出のための解釈可能なアプローチ
- Authors: Yifei Yang, Peng Wang, Xiaofan He, Dongmian Zou,
- Abstract要約: 本稿では,性能向上のための解釈可能性の力を活用したグラフ異常検出手法を提案する。
本手法は, グラフニューラルネットワークの勾配から抽出したアテンションマップを抽出し, 異常評価の基礎となる。
実世界のグラフ分類と無線ネットワークデータセットにおける最先端グラフ異常検出技術に対する我々のアプローチを広く評価する。
- 参考スコア(独自算出の注目度): 26.011499804523808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting unusual patterns in graph data is a crucial task in data mining. However, existing methods face challenges in consistently achieving satisfactory performance and often lack interpretability, which hinders our understanding of anomaly detection decisions. In this paper, we propose a novel approach to graph anomaly detection that leverages the power of interpretability to enhance performance. Specifically, our method extracts an attention map derived from gradients of graph neural networks, which serves as a basis for scoring anomalies. Notably, our approach is flexible and can be used in various anomaly detection settings. In addition, we conduct theoretical analysis using synthetic data to validate our method and gain insights into its decision-making process. To demonstrate the effectiveness of our method, we extensively evaluate our approach against state-of-the-art graph anomaly detection techniques on real-world graph classification and wireless network datasets. The results consistently demonstrate the superior performance of our method compared to the baselines.
- Abstract(参考訳): グラフデータの異常なパターンを検出することは、データマイニングにおいて重要な課題である。
しかし、既存の手法は、一貫して満足な性能を達成し、しばしば解釈可能性の欠如に直面するため、異常判定の決定に対する私たちの理解を妨げている。
本稿では,解析可能性のパワーを活用して性能を向上させるグラフ異常検出手法を提案する。
具体的には,グラフニューラルネットワークの勾配から抽出したアテンションマップを抽出し,異常評価の基礎となる。
特に,本手法は柔軟であり,様々な異常検出設定で使用することができる。
さらに, 合成データを用いて理論的解析を行い, その方法を検証するとともに, 意思決定プロセスに関する洞察を得る。
提案手法の有効性を実証するため,実世界のグラフ分類と無線ネットワークデータセットにおける最先端グラフ異常検出技術に対する我々のアプローチを広範囲に評価した。
その結果,本手法はベースラインに比べて優れた性能を示した。
関連論文リスト
- Anomaly Detection in Graph Structured Data: A Survey [0.46040036610482665]
本稿では,グラフデータにおける異常検出手法の概要を概観する。
本稿では,最先端の異常検出手法を分類する新しい分類法を提案する。
論文 参考訳(メタデータ) (2024-05-10T01:30:25Z) - Three Revisits to Node-Level Graph Anomaly Detection: Outliers, Message
Passing and Hyperbolic Neural Networks [9.708651460086916]
本稿では,教師なしノードレベルのグラフ異常検出タスクに対するデータセットとアプローチを再検討する。
まず,グラフデータセットにおいて,より多様なグラフベースの異常を発生させるアウトリーインジェクション手法を提案する。
第2に、メッセージパッシングを利用した手法を非使用者と比較し、予期せぬ性能低下を明らかにした。
論文 参考訳(メタデータ) (2024-03-06T19:42:34Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
グラフレベルの異常検出(GLAD)は、コレクションの大多数と比べて顕著な相違を示すグラフを識別することを目的としている。
本稿では,異常なグラフを検出し,同時に情報的説明を生成する自己解釈グラフaNomaly dETectionモデル(SIGNET)を提案する。
論文 参考訳(メタデータ) (2023-10-25T10:10:07Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
グラフニューラルネットワーク(GNN)は、さまざまな分野でますます普及している。
個人データの不正利用に関する懸念が高まっている。
近年の研究では、このような誤用から画像データを保護する効果的な方法として、知覚不能な毒殺攻撃が報告されている。
本稿では,グラフデータの不正使用に対する保護のためにGraphCloakを導入する。
論文 参考訳(メタデータ) (2023-10-11T00:50:55Z) - A Complex Network based Graph Embedding Method for Link Prediction [0.0]
本稿では,人気相似性と地域アトラクションのパラダイムに基づく新しいグラフ埋め込み手法を提案する。
実験結果から,提案手法は最先端のグラフ埋め込みアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-11T14:46:38Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
グラフの外れ値検出は、多くのアプリケーションにおいて、新しいが重要な機械学習タスクである。
UNODと呼ばれるグラフに対して、最初の包括的教師なしノード外乱検出ベンチマークを示す。
論文 参考訳(メタデータ) (2022-06-21T01:46:38Z) - Raising the Bar in Graph-level Anomaly Detection [33.737428672049255]
既存のワンクラスのアプローチを大幅に改善する,新たなディープラーニングアプローチを提案する。
提案手法は,既存手法と比較して平均11.8%AUCの性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-27T09:17:57Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale
Contrastive Learning Approach [49.439021563395976]
グラフデータからの異常検出は、ソーシャルネットワーク、金融、eコマースなど、多くのアプリケーションにおいて重要なデータマイニングタスクである。
マルチスケールcONtrastive lEarning(略してANEMONE)を用いた新しいフレームワーク, graph Anomaly dEtection フレームワークを提案する。
グラフニューラルネットワークをバックボーンとして、複数のグラフスケール(ビュー)から情報をエンコードすることで、グラフ内のノードのより良い表現を学習する。
論文 参考訳(メタデータ) (2022-02-11T09:45:11Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。