Frequency-domain MLPs are More Effective Learners in Time Series
Forecasting
- URL: http://arxiv.org/abs/2311.06184v1
- Date: Fri, 10 Nov 2023 17:05:13 GMT
- Title: Frequency-domain MLPs are More Effective Learners in Time Series
Forecasting
- Authors: Kun Yi, Qi Zhang, Wei Fan, Shoujin Wang, Pengyang Wang, Hui He, Defu
Lian, Ning An, Longbing Cao, Zhendong Niu
- Abstract summary: Time series forecasting has played the key role in different industrial domains, including finance, traffic, energy, and healthcare.
Most-based forecasting methods suffer from the point-wise mappings and information bottleneck.
We propose FreTS, a simple yet effective architecture built upon Frequency-domains for Time Series forecasting.
- Score: 67.60443290781988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting has played the key role in different industrial,
including finance, traffic, energy, and healthcare domains. While existing
literatures have designed many sophisticated architectures based on RNNs, GNNs,
or Transformers, another kind of approaches based on multi-layer perceptrons
(MLPs) are proposed with simple structure, low complexity, and {superior
performance}. However, most MLP-based forecasting methods suffer from the
point-wise mappings and information bottleneck, which largely hinders the
forecasting performance. To overcome this problem, we explore a novel direction
of applying MLPs in the frequency domain for time series forecasting. We
investigate the learned patterns of frequency-domain MLPs and discover their
two inherent characteristic benefiting forecasting, (i) global view: frequency
spectrum makes MLPs own a complete view for signals and learn global
dependencies more easily, and (ii) energy compaction: frequency-domain MLPs
concentrate on smaller key part of frequency components with compact signal
energy. Then, we propose FreTS, a simple yet effective architecture built upon
Frequency-domain MLPs for Time Series forecasting. FreTS mainly involves two
stages, (i) Domain Conversion, that transforms time-domain signals into complex
numbers of frequency domain; (ii) Frequency Learning, that performs our
redesigned MLPs for the learning of real and imaginary part of frequency
components. The above stages operated on both inter-series and intra-series
scales further contribute to channel-wise and time-wise dependency learning.
Extensive experiments on 13 real-world benchmarks (including 7 benchmarks for
short-term forecasting and 6 benchmarks for long-term forecasting) demonstrate
our consistent superiority over state-of-the-art methods.
Related papers
- MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - PDMLP: Patch-based Decomposed MLP for Long-Term Time Series Forecasting [0.0]
Recent studies have attempted to refine the Transformer architecture to demonstrate its effectiveness in Long-Term Time Series Forecasting (LTSF) tasks.
We attribute the effectiveness of these models largely to the adopted Patch mechanism, which enhances sequence locality.
Further investigation suggests that simple linear layers augmented with the Patch mechanism may outperform complex Transformer-based LTSF models.
arXiv Detail & Related papers (2024-05-22T12:12:20Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment.
Current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth.
We propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components.
arXiv Detail & Related papers (2024-05-22T02:37:02Z) - ATFNet: Adaptive Time-Frequency Ensembled Network for Long-term Time Series Forecasting [7.694820760102176]
ATFNet is an innovative framework that combines a time domain module and a frequency domain module.
We introduce Dominant Harmonic Series Energy Weighting, a novel mechanism for adjusting the weights between the two modules.
Our Complex-valued Spectrum Attention mechanism offers a novel approach to discern the intricate relationships between different frequency combinations.
arXiv Detail & Related papers (2024-04-08T04:41:39Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Less Is More: Fast Multivariate Time Series Forecasting with Light
Sampling-oriented MLP Structures [18.592350352298553]
We introduce LightTS, a light deep learning architecture merely based on simple-based structures.
Compared with the existing state-of-the-art methods, LightTS demonstrates better performance on five of them and comparable performance on the rest.
LightTS is robust and has a much smaller variance in forecasting accuracy than previous SOTA methods in long sequence forecasting tasks.
arXiv Detail & Related papers (2022-07-04T04:03:00Z) - FAMLP: A Frequency-Aware MLP-Like Architecture For Domain Generalization [73.41395947275473]
We propose a novel frequency-aware architecture, in which the domain-specific features are filtered out in the transformed frequency domain.
Experiments on three benchmarks demonstrate significant performance, outperforming the state-of-the-art methods by a margin of 3%, 4% and 9%, respectively.
arXiv Detail & Related papers (2022-03-24T07:26:29Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z) - Fourier Features Let Networks Learn High Frequency Functions in Low
Dimensional Domains [69.62456877209304]
We show that passing input points through a simple Fourier feature mapping enables a multilayer perceptron to learn high-frequency functions.
Results shed light on advances in computer vision and graphics that achieve state-of-the-art results.
arXiv Detail & Related papers (2020-06-18T17:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.