ATFNet: Adaptive Time-Frequency Ensembled Network for Long-term Time Series Forecasting
- URL: http://arxiv.org/abs/2404.05192v1
- Date: Mon, 8 Apr 2024 04:41:39 GMT
- Title: ATFNet: Adaptive Time-Frequency Ensembled Network for Long-term Time Series Forecasting
- Authors: Hengyu Ye, Jiadong Chen, Shijin Gong, Fuxin Jiang, Tieying Zhang, Jianjun Chen, Xiaofeng Gao,
- Abstract summary: ATFNet is an innovative framework that combines a time domain module and a frequency domain module.
We introduce Dominant Harmonic Series Energy Weighting, a novel mechanism for adjusting the weights between the two modules.
Our Complex-valued Spectrum Attention mechanism offers a novel approach to discern the intricate relationships between different frequency combinations.
- Score: 7.694820760102176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The intricate nature of time series data analysis benefits greatly from the distinct advantages offered by time and frequency domain representations. While the time domain is superior in representing local dependencies, particularly in non-periodic series, the frequency domain excels in capturing global dependencies, making it ideal for series with evident periodic patterns. To capitalize on both of these strengths, we propose ATFNet, an innovative framework that combines a time domain module and a frequency domain module to concurrently capture local and global dependencies in time series data. Specifically, we introduce Dominant Harmonic Series Energy Weighting, a novel mechanism for dynamically adjusting the weights between the two modules based on the periodicity of the input time series. In the frequency domain module, we enhance the traditional Discrete Fourier Transform (DFT) with our Extended DFT, designed to address the challenge of discrete frequency misalignment. Additionally, our Complex-valued Spectrum Attention mechanism offers a novel approach to discern the intricate relationships between different frequency combinations. Extensive experiments across multiple real-world datasets demonstrate that our ATFNet framework outperforms current state-of-the-art methods in long-term time series forecasting.
Related papers
- MFF-FTNet: Multi-scale Feature Fusion across Frequency and Temporal Domains for Time Series Forecasting [18.815152183468673]
Time series forecasting is crucial in many fields, yet current deep learning models struggle with noise, data sparsity, and capturing complex patterns.
This paper presents MFF-FTNet, a novel framework addressing these challenges by combining contrastive learning with multi-scale feature extraction.
Extensive experiments on five real-world datasets demonstrate that MFF-FTNet significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-11-26T12:41:42Z) - FlexTSF: A Universal Forecasting Model for Time Series with Variable Regularities [17.164913785452367]
We propose FlexTSF, a universal time series forecasting model that possesses better generalization and supports both regular and irregular time series.
Experiments on 12 datasets show that FlexTSF outperforms state-of-the-art forecasting models respectively designed for regular and irregular time series.
arXiv Detail & Related papers (2024-10-30T16:14:09Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
This paper introduces Moirai-MoE, using a single input/output projection layer while delegating the modeling of diverse time series patterns to the sparse mixture of experts.
Extensive experiments on 39 datasets demonstrate the superiority of Moirai-MoE over existing foundation models in both in-distribution and zero-shot scenarios.
arXiv Detail & Related papers (2024-10-14T13:01:11Z) - FTMixer: Frequency and Time Domain Representations Fusion for Time Series Modeling [7.980240191498627]
Time series data can be represented in both the time and frequency domains.
We propose the Frequency and Time Domain Mixer (FTMixer) to harness the strengths of both domains.
arXiv Detail & Related papers (2024-05-24T06:31:46Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment.
Current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth.
We propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components.
arXiv Detail & Related papers (2024-05-22T02:37:02Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Frequency-domain MLPs are More Effective Learners in Time Series
Forecasting [67.60443290781988]
Time series forecasting has played the key role in different industrial domains, including finance, traffic, energy, and healthcare.
Most-based forecasting methods suffer from the point-wise mappings and information bottleneck.
We propose FreTS, a simple yet effective architecture built upon Frequency-domains for Time Series forecasting.
arXiv Detail & Related papers (2023-11-10T17:05:13Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
This research advocates for a unified model paradigm that transcends domain boundaries.
Learning an effective cross-domain model presents the following challenges.
We propose UniTime for effective cross-domain time series learning.
arXiv Detail & Related papers (2023-10-15T06:30:22Z) - WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series
Forecasting [61.64303388738395]
We propose a Wavelet-Fourier Transform Network (WFTNet) for long-term time series forecasting.
Tests on various time series datasets show WFTNet consistently outperforms other state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-20T13:44:18Z) - TFDNet: Time-Frequency Enhanced Decomposed Network for Long-term Time
Series Forecasting [2.6361094144982005]
Long-term time series forecasting is a vital task and has a wide range of real applications.
Recent methods focus on capturing the underlying patterns from one single domain.
We propose a Time-Frequency Enhanced Decomposed Network (TFDNet) to capture both the long-term underlying patterns and temporal periodicity from the time-frequency domain.
arXiv Detail & Related papers (2023-08-25T14:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.