Towards Expressive Spectral-Temporal Graph Neural Networks for Time Series Forecasting
- URL: http://arxiv.org/abs/2305.06587v3
- Date: Sun, 23 Feb 2025 01:06:33 GMT
- Title: Towards Expressive Spectral-Temporal Graph Neural Networks for Time Series Forecasting
- Authors: Ming Jin, Guangsi Shi, Yuan-Fang Li, Bo Xiong, Tian Zhou, Flora D. Salim, Liang Zhao, Lingfei Wu, Qingsong Wen, Shirui Pan,
- Abstract summary: Spectral-temporal graph neural network is a promising abstraction underlying most time series forecasting models.<n>We establish a theoretical framework that unravels the expressive power of spectral-temporal GNNs.<n>Our findings pave the way for devising a broader array of provably expressive GNN-based models for time series.
- Score: 101.5022396668152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series forecasting has remained a focal point due to its vital applications in sectors such as energy management and transportation planning. Spectral-temporal graph neural network is a promising abstraction underlying most time series forecasting models that are based on graph neural networks (GNNs). However, more is needed to know about the underpinnings of this branch of methods. In this paper, we establish a theoretical framework that unravels the expressive power of spectral-temporal GNNs. Our results show that linear spectral-temporal GNNs are universal under mild assumptions, and their expressive power is bounded by our extended first-order Weisfeiler-Leman algorithm on discrete-time dynamic graphs. To make our findings useful in practice on valid instantiations, we discuss related constraints in detail and outline a theoretical blueprint for designing spatial and temporal modules in spectral domains. Building on these insights and to demonstrate how powerful spectral-temporal GNNs are based on our framework, we propose a simple instantiation named Temporal Graph Gegenbauer Convolution (TGGC), which significantly outperforms most existing models with only linear components and shows better model efficiency. Our findings pave the way for devising a broader array of provably expressive GNN-based models for time series.
Related papers
- On The Temporal Domain of Differential Equation Inspired Graph Neural
Networks [14.779420473274737]
We show that our model, called TDE-GNN, can capture a wide range of temporal dynamics that go beyond typical first or second-order methods.
We demonstrate the benefit of learning the temporal dependencies using our method rather than using pre-defined temporal dynamics on several graph benchmarks.
arXiv Detail & Related papers (2024-01-20T01:12:57Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
Current state-of-the-art graph neural network (GNN)-based forecasting methods usually require both graph networks (e.g., GCN) and temporal networks (e.g., LSTM) to capture inter-series (spatial) dynamics and intra-series (temporal) dependencies, respectively.
We propose a novel Fourier Graph Neural Network (FourierGNN) by stacking our proposed Fourier Graph Operator (FGO) to perform matrix multiplications in Fourier space.
Our experiments on seven datasets have demonstrated superior performance with higher efficiency and fewer parameters compared with state-of-the-
arXiv Detail & Related papers (2023-11-10T17:13:26Z) - DyExplainer: Explainable Dynamic Graph Neural Networks [37.16783248212211]
We present DyExplainer, a novel approach to explaining dynamic Graph Neural Networks (GNNs) on the fly.
DyExplainer trains a dynamic GNN backbone to extract representations of the graph at each snapshot.
We also augment our approach with contrastive learning techniques to provide priori-guided regularization.
arXiv Detail & Related papers (2023-10-25T05:26:33Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
Space-time graph neural networks (ST-GNNs) learn efficient graph representations of time-varying data.
In this paper we revisit the properties of ST-GNNs and prove that they are stable to graph stabilitys.
Our analysis suggests that ST-GNNs are suitable for transfer learning on time-varying graphs.
arXiv Detail & Related papers (2022-10-28T16:59:51Z) - Scalable Spatiotemporal Graph Neural Networks [14.415967477487692]
Graph neural networks (GNNs) are often the core component of the forecasting architecture.
In most pretemporal GNNs, the computational complexity scales up to a quadratic factor with the length of the sequence times the number of links in the graph.
We propose a scalable architecture that exploits an efficient encoding of both temporal and spatial dynamics.
arXiv Detail & Related papers (2022-09-14T09:47:38Z) - An Explainer for Temporal Graph Neural Networks [27.393641343203363]
Temporal graph neural networks (TGNNs) have been widely used for modeling time-evolving graph-related tasks.
We propose a novel explainer framework for TGNN models.
arXiv Detail & Related papers (2022-09-02T04:12:40Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGAT is a method to make attention based GNNs lightweight by using spectral sparsification to generate an optimal pruning of the input graph.
We experimentally evaluate FastGAT on several large real world graph datasets for node classification tasks.
arXiv Detail & Related papers (2020-06-15T22:07:54Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.