論文の概要: Learning material synthesis-process-structure-property relationship by
data fusion: Bayesian Coregionalization N-Dimensional Piecewise Function
Learning
- arxiv url: http://arxiv.org/abs/2311.06228v2
- Date: Mon, 20 Nov 2023 21:43:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 03:59:46.766226
- Title: Learning material synthesis-process-structure-property relationship by
data fusion: Bayesian Coregionalization N-Dimensional Piecewise Function
Learning
- Title(参考訳): データ融合による学習材料合成-プロセス-構造-プロパティ関係:ベイジアンコリージョン化N次元Piecewise Function Learning
- Authors: A. Gilad Kusne, Austin McDannald, Brian DeCost
- Abstract要約: 合成プロセス-構造-プロパティ relAtionship coreGionalized lEarner (SAGE) アルゴリズムを提案する。
マルチモーダルなコリージョン化を用いて、データソース間の知識をマージして、合成-プロセス-構造-プロパティ関係を学習する完全ベイズアルゴリズム。
- 参考スコア(独自算出の注目度): 0.6906005491572401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous materials research labs require the ability to combine and learn
from diverse data streams. This is especially true for learning material
synthesis-process-structure-property relationships, key to accelerating
materials optimization and discovery as well as accelerating mechanistic
understanding. We present the Synthesis-process-structure-property relAtionship
coreGionalized lEarner (SAGE) algorithm. A fully Bayesian algorithm that uses
multimodal coregionalization to merge knowledge across data sources to learn
synthesis-process-structure-property relationships. SAGE outputs a
probabilistic posterior for the relationships including the most likely
relationships given the data.
- Abstract(参考訳): autonomous materials research labsは、さまざまなデータストリームを結合し、学習する能力を必要としている。
これは、材料合成-プロセス-構造-プロパティ関係の学習、材料の最適化と発見の促進、機械的理解の加速に特に当てはまる。
合成プロセス-構造-プロパティ relAtionship coreGionalized lEarner (SAGE) アルゴリズムを提案する。
マルチモーダルなコリージョン化を用いて、データソース間の知識をマージして、合成-プロセス-構造-プロパティ関係を学習する完全ベイズアルゴリズム。
SAGEは、データに与えられた最も可能性の高い関係を含む関係の確率論的後部を出力する。
関連論文リスト
- Understanding Synthetic Context Extension via Retrieval Heads [51.8869530817334]
本稿では,検索と推論を必要とする3つの長文タスクに対する合成データの微調整について検討する。
合成データに基づいてトレーニングされたモデルは、実際のデータには及ばないが、驚くべきことに、ミスマッチを解釈できる。
我々の結果は、合成データの微調整性能の解釈方法と、長期にわたる実世界の能力学習のためのより良いデータ作成方法に光を当てた。
論文 参考訳(メタデータ) (2024-10-29T17:55:00Z) - Towards a Theoretical Understanding of Synthetic Data in LLM Post-Training: A Reverse-Bottleneck Perspective [9.590540796223715]
学習後モデルの一般化能力は生成モデルから得られる情報ゲインによって決定されることを示す。
また,GGMIによる一般化ゲインの概念を導入し,一般化ゲインと情報ゲインの関係を明らかにする。
この分析は、合成データ生成の理論基盤として機能し、後学習モデルの一般化能力との関係をさらに強調する。
論文 参考訳(メタデータ) (2024-10-02T16:32:05Z) - Towards Privacy-Preserving Relational Data Synthesis via Probabilistic Relational Models [3.877001015064152]
確率的リレーショナルモデルは、一階述語論理と確率的モデルを組み合わせるための確立された形式主義を提供する。
人工知能の分野は、さまざまな機械学習タスクのために、ますます大量のリレーショナルトレーニングデータを必要とする。
プライバシの懸念やデータ保護の規制、高コストなどにより、現実のデータの収集は難しいことが多い。
論文 参考訳(メタデータ) (2024-09-06T11:24:25Z) - Knowledge-Enhanced Hierarchical Information Correlation Learning for
Multi-Modal Rumor Detection [82.94413676131545]
マルチモーダルなうわさ検出のための知識強化型階層型情報相関学習手法(KhiCL)を提案する。
KhiCLは異質な一様性特徴を共通特徴空間に伝達するために、クロスモーダルな関節辞書を利用する。
画像やテキストから視覚的およびテキスト的実体を抽出し、知識関連推論戦略を設計する。
論文 参考訳(メタデータ) (2023-06-28T06:08:20Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
合成ネットワーク一般化(CoRelNet)と呼ばれる類似度分布スコアに基づく簡単なアーキテクチャを導入する。
単純なアーキテクチャの選択は、分布外一般化において既存のモデルより優れていることが分かる。
論文 参考訳(メタデータ) (2022-06-09T16:24:01Z) - Physics in the Machine: Integrating Physical Knowledge in Autonomous
Phase-Mapping [10.629434761354938]
科学インフォームドAIや科学AIは、データ分析から、クローズドループ自律システムにおける実験設計、シミュレーション、実行、分析まで、成長してきた。
CAMEOアルゴリズムは、物質系の構成構造関係を学習し、最適な機能特性を持つ材料組成を特定するという2つの課題に対処するために、科学的なAIを使用する。
論文 参考訳(メタデータ) (2021-11-15T00:48:34Z) - Audacity of huge: overcoming challenges of data scarcity and data
quality for machine learning in computational materials discovery [1.0036312061637764]
機械学習(ML)に加速された発見は、予測構造とプロパティの関係を明らかにするために大量の高忠実度データを必要とする。
材料発見に関心を持つ多くの特性において、データ生成の挑戦的な性質と高いコストは、人口が少なく、疑わしい品質を持つデータランドスケープを生み出している。
手作業によるキュレーションがなければ、より洗練された自然言語処理と自動画像解析により、文献から構造-プロパティ関係を学習できるようになる。
論文 参考訳(メタデータ) (2021-11-02T21:43:58Z) - Materials Representation and Transfer Learning for Multi-Property
Prediction [22.068267502715404]
材料科学における機械学習の採用は、急速に材料特性の予測に変化をもたらした。
機械学習の最近の進歩の完全な資本化を制限するハードルには、複数の要素の基本的な相互作用を学ぶ方法の限定的な開発が含まれる。
我々は,材料組成のみを用いて(i)予測をシームレスに統合する階層的相関学習フレームワーク,(ii)多目的回帰における対象特性間の相関関係の学習と活用,および(iii)生成的伝達学習による接尾辞領域からの学習データを活用する階層的相関学習フレームワークを導入する。
論文 参考訳(メタデータ) (2021-06-04T03:00:34Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
マルチリニア圧縮学習(MCL)フレームワークは、マルチリニア圧縮センシングと機械学習をエンドツーエンドシステムに統合する。
MCLの背後にある主要なアイデアは、下流学習タスクの信号から重要な特徴を捉えることのできるテンソル部分空間の存在を仮定することである。
本稿では、上記の要件、すなわち、関心の信号が分離可能なテンソル部分空間をどうやって見つけるかという、2つの要件に対処する新しい解決策を提案する。
論文 参考訳(メタデータ) (2020-02-17T19:06:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。