論文の概要: Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization
- arxiv url: http://arxiv.org/abs/2311.06243v2
- Date: Sun, 28 Apr 2024 20:05:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 00:34:56.109329
- Title: Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization
- Title(参考訳): 蝶の因子化によるパラメータ効率の良い直交ファインタニング
- Authors: Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, Bernhard Schölkopf,
- Abstract要約: 下流タスク適応のための原則的微調整パラダイムである直交微調整(Orthogonal Finetuning, OFT)について検討する。
優れた一般化性を示しているにもかかわらず、OFTはまだかなり多くのトレーニング可能なパラメータを使っている。
我々はこのパラメータ化をOFTに適用し、ORFT(Orthogonal Butterfly)と呼ばれる新しいパラメータ効率の微調整法を開発した。
- 参考スコア(独自算出の注目度): 102.92240148504774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large foundation models are becoming ubiquitous, but training them from scratch is prohibitively expensive. Thus, efficiently adapting these powerful models to downstream tasks is increasingly important. In this paper, we study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation. Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters due to the high dimensionality of orthogonal matrices. To address this, we start by examining OFT from an information transmission perspective, and then identify a few key desiderata that enable better parameter-efficiency. Inspired by how the Cooley-Tukey fast Fourier transform algorithm enables efficient information transmission, we propose an efficient orthogonal parameterization using butterfly structures. We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT). By subsuming OFT as a special case, BOFT introduces a generalized orthogonal finetuning framework. Finally, we conduct an extensive empirical study of adapting large vision transformers, large language models, and text-to-image diffusion models to various downstream tasks in vision and language.
- Abstract(参考訳): 大規模なファンデーションモデルはユビキタスになりつつあるが、それらをゼロからトレーニングすることは違法に高価である。
したがって、これらの強力なモデルを下流タスクに効率的に適応させることがますます重要である。
本稿では,下流タスク適応のための原則的微調整パラダイムである直交微調整(Orthogonal Finetuning, OFT)について検討する。
優れた一般化性を示すにもかかわらず、OFTは直交行列の高次元性のため、かなり多くのトレーニング可能なパラメータを使用する。
これを解決するために、情報伝達の観点からOFTを調べ、パラメータ効率を向上するいくつかのキーデシラタを特定します。
The Cooley-Tukey fast Fourier transform algorithm enables efficient information transmission, we propose a efficient orthogonal parameterization using butterfly structure。
我々はこのパラメータ化をOFTに適用し、Orthogonal Butterfly (BOFT)と呼ばれる新しいパラメータ効率の微調整法を開発した。
特別な場合として OFT を仮定することにより、BOFT は一般化直交微調整フレームワークを導入する。
最後に、大きな視覚変換器、大きな言語モデル、およびテキストから画像への拡散モデルを、視覚および言語における様々な下流タスクに適用するための広範な実証的研究を行う。
関連論文リスト
- Visual Fourier Prompt Tuning [63.66866445034855]
本稿では,大規模なトランスフォーマーモデルに適用するための汎用的で効果的な方法として,Visual Fourier Prompt Tuning (VFPT)法を提案する。
提案手法では,高速フーリエ変換を即時埋め込みに取り入れ,空間領域情報と周波数領域情報の両方を調和的に検討する。
提案手法は,2つのベンチマークにおいて,現状のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-11-02T18:18:35Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
生成モデルのための新しいスペクトル対応適応フレームワークを提案する。
本手法は,事前学習した重みの特異値とその基底ベクトルを調節する。
本稿では,計算効率と表現能力のバランスをとるスペクトルオーソ分解適応(SODA)を提案する。
論文 参考訳(メタデータ) (2024-05-31T17:43:35Z) - Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation [20.47507483613317]
微調整法の代表行は直交微調整(OFT)である。
OFTはパラメータ空間内の角距離を厳格に保存し、事前訓練された知識を保存する。
この問題に対処するため、準ギヴンズ直交微調整(qGOFT)を提案する。
論文 参考訳(メタデータ) (2024-04-05T15:28:44Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
動的チューニング(DyT)は、ViT適応のためのパラメータと推論効率を改善するための新しいアプローチである。
DyTは既存のPEFT法に比べて性能が優れており、VTAB-1KベンチマークではFLOPの71%しか呼び出されていない。
論文 参考訳(メタデータ) (2024-03-18T14:05:52Z) - E^2VPT: An Effective and Efficient Approach for Visual Prompt Tuning [55.50908600818483]
新しいタスクのための微調整された大規模な事前学習型ビジョンモデルは、パラメーター集約化が進んでいる。
本稿では,大規模なトランスフォーマーモデル適応のための効果的かつ効率的なビジュアルプロンプトチューニング(E2VPT)手法を提案する。
提案手法は2つのベンチマークにおいて,最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2023-07-25T19:03:21Z) - Towards Adaptive Prefix Tuning for Parameter-Efficient Language Model
Fine-tuning [32.84435258519842]
ゲート機構により,粒度の細かいトークンレベルと粗い層レベルの両方でプレフィックスを調整できる適応型プリフィックスチューニング(APT)を提案する。
SuperGLUEとNERデータセットの実験は、APTの有効性を示している。
論文 参考訳(メタデータ) (2023-05-24T14:51:01Z) - Global Vision Transformer Pruning with Hessian-Aware Saliency [93.33895899995224]
この研究はヴィジュアルトランスフォーマー(ViT)モデルの共通設計哲学に挑戦する。
遅延を意識した規則化による直接遅延低減を実現し,すべての層や構造に匹敵する新しいヘッセン型構造解析基準を導出する。
DeiT-Baseモデルで反復的なプルーニングを実行すると、NViT(Novel ViT)と呼ばれる新しいアーキテクチャファミリが生まれ、パラメータをより効率的に利用する新しいパラメータが現れる。
論文 参考訳(メタデータ) (2021-10-10T18:04:59Z) - Federated Bayesian Optimization via Thompson Sampling [33.087439644066876]
本稿では,FBOとFLの主な課題を原則的に克服するフェデレートトンプソンサンプリング(FTS)を提案する。
通信効率, 計算効率, 実用性能の観点から, FTS の有効性を実証的に実証した。
論文 参考訳(メタデータ) (2020-10-20T09:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。