Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models
- URL: http://arxiv.org/abs/2405.21050v1
- Date: Fri, 31 May 2024 17:43:35 GMT
- Title: Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models
- Authors: Xinxi Zhang, Song Wen, Ligong Han, Felix Juefei-Xu, Akash Srivastava, Junzhou Huang, Hao Wang, Molei Tao, Dimitris N. Metaxas,
- Abstract summary: We propose a novel spectrum-aware adaptation framework for generative models.
Our method adjusts both singular values and their basis vectors of pretrained weights.
We introduce Spectral Ortho Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity.
- Score: 73.88009808326387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adapting large-scale pre-trained generative models in a parameter-efficient manner is gaining traction. Traditional methods like low rank adaptation achieve parameter efficiency by imposing constraints but may not be optimal for tasks requiring high representation capacity. We propose a novel spectrum-aware adaptation framework for generative models. Our method adjusts both singular values and their basis vectors of pretrained weights. Using the Kronecker product and efficient Stiefel optimizers, we achieve parameter-efficient adaptation of orthogonal matrices. We introduce Spectral Orthogonal Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity. Extensive evaluations on text-to-image diffusion models demonstrate SODA's effectiveness, offering a spectrum-aware alternative to existing fine-tuning methods.
Related papers
- LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks.
We propose a novel approach that employs a low rank tensor parametrization for model updates.
Our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement [0.7558576228782637]
We propose a framework for efficient Source-Free Domain Adaptation (SFDA)
Our approach introduces an improved paradigm for source-model preparation and target-side adaptation.
We demonstrate that our framework is compatible with various SFDA methods and achieves significant computational efficiency.
arXiv Detail & Related papers (2024-10-03T02:12:03Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Sine Activated Low-Rank Matrices for Parameter Efficient Learning [25.12262017296922]
We propose a novel theoretical framework that integrates a sinusoidal function within the low-rank decomposition process.
Our method proves to be an enhancement for existing low-rank models, as evidenced by its successful application in Vision Transformers (ViT), Large Language Models (LLMs), Neural Radiance Fields (NeRF)
arXiv Detail & Related papers (2024-03-28T08:58:20Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
Dynamic Tuning (DyT) is a novel approach to improve both parameter and inference efficiency for ViT adaptation.
DyT achieves superior performance compared to existing PEFT methods while evoking only 71% of their FLOPs on the VTAB-1K benchmark.
arXiv Detail & Related papers (2024-03-18T14:05:52Z) - Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization [102.92240148504774]
We study a principled finetuning paradigm -- Orthogonal Finetuning (OFT) -- for downstream task adaptation.
Despite demonstrating good generalizability, OFT still uses a fairly large number of trainable parameters.
We apply this parameterization to OFT, creating a novel parameter-efficient finetuning method, called Orthogonal Butterfly (BOFT)
arXiv Detail & Related papers (2023-11-10T18:59:54Z) - An Adaptive Alternating-direction-method-based Nonnegative Latent Factor
Model [2.857044909410376]
An alternating-direction-method-based nonnegative latent factor model can perform efficient representation learning to a high-dimensional and incomplete (HDI) matrix.
This paper proposes an Adaptive Alternating-direction-method-based Nonnegative Latent Factor model, whose hyper- parameter adaptation is implemented following the principle of particle swarm optimization.
Empirical studies on nonnegative HDI matrices generated by industrial applications indicate that A2NLF outperforms several state-of-the-art models in terms of computational and storage efficiency, as well as maintains highly competitive estimation accuracy for an HDI matrix's missing data
arXiv Detail & Related papers (2022-04-11T03:04:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.