A Data-driven Deep Learning Approach for Bitcoin Price Forecasting
- URL: http://arxiv.org/abs/2311.06280v1
- Date: Fri, 27 Oct 2023 10:35:47 GMT
- Title: A Data-driven Deep Learning Approach for Bitcoin Price Forecasting
- Authors: Parth Daxesh Modi, Kamyar Arshi, Pertami J. Kunz, Abdelhak M. Zoubir
- Abstract summary: We propose a shallow Bidirectional-LSTM (Bi-LSTM) model to forecast bitcoin closing prices in a daily time frame.
We compare the performance with that of other forecasting methods, and show that with the help of the proposed feature engineering method, a shallow deep neural network outperforms other popular price forecasting models.
- Score: 10.120972108960425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bitcoin as a cryptocurrency has been one of the most important digital coins
and the first decentralized digital currency. Deep neural networks, on the
other hand, has shown promising results recently; however, we require huge
amount of high-quality data to leverage their power. There are some techniques
such as augmentation that can help us with increasing the dataset size, but we
cannot exploit them on historical bitcoin data. As a result, we propose a
shallow Bidirectional-LSTM (Bi-LSTM) model, fed with feature engineered data
using our proposed method to forecast bitcoin closing prices in a daily time
frame. We compare the performance with that of other forecasting methods, and
show that with the help of the proposed feature engineering method, a shallow
deep neural network outperforms other popular price forecasting models.
Related papers
- Multi-Source Hard and Soft Information Fusion Approach for Accurate Cryptocurrency Price Movement Prediction [5.885853464728419]
We introduce a novel approach termed hard and soft information fusion (HSIF) to enhance the accuracy of cryptocurrency price movement forecasts.
Our model has about 96.8% accuracy in predicting price movement.
incorporating information enables our model to grasp the influence of social sentiment on price fluctuations.
arXiv Detail & Related papers (2024-09-27T16:32:57Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Boosted Dynamic Neural Networks [53.559833501288146]
A typical EDNN has multiple prediction heads at different layers of the network backbone.
To optimize the model, these prediction heads together with the network backbone are trained on every batch of training data.
Treating training and testing inputs differently at the two phases will cause the mismatch between training and testing data distributions.
We formulate an EDNN as an additive model inspired by gradient boosting, and propose multiple training techniques to optimize the model effectively.
arXiv Detail & Related papers (2022-11-30T04:23:12Z) - Exploiting the Potential of Datasets: A Data-Centric Approach for Model
Robustness [48.70325679650579]
We propose a novel algorithm for dataset enhancement that works well for many existing deep neural networks.
In the data-centric robust learning competition hosted by Alibaba Group and Tsinghua University, our algorithm came third out of more than 3000 competitors.
arXiv Detail & Related papers (2022-03-10T12:16:32Z) - Datamodels: Predicting Predictions from Training Data [86.66720175866415]
We present a conceptual framework, datamodeling, for analyzing the behavior of a model class in terms of the training data.
We show that even simple linear datamodels can successfully predict model outputs.
arXiv Detail & Related papers (2022-02-01T18:15:24Z) - On Technical Trading and Social Media Indicators in Cryptocurrencies'
Price Classification Through Deep Learning [7.7172142175424066]
This work aims to analyse the predictability of price movements of cryptocurrencies on both hourly and daily data observed from January 2017 to January 2021.
For our experiments, we used three sets of features: technical, trading and social media indicators, considering a restricted model of only technical indicators and an unrestricted model with technical, trading and social media indicators.
The study shows that, based on the hourly frequency results, the unrestricted model outperforms the restricted one.
arXiv Detail & Related papers (2021-02-13T13:18:36Z) - Evaluating data augmentation for financial time series classification [85.38479579398525]
We evaluate several augmentation methods applied to stocks datasets using two state-of-the-art deep learning models.
For a relatively small dataset augmentation methods achieve up to $400%$ improvement in risk adjusted return performance.
For a larger stock dataset augmentation methods achieve up to $40%$ improvement.
arXiv Detail & Related papers (2020-10-28T17:53:57Z) - A Blockchain Transaction Graph based Machine Learning Method for Bitcoin
Price Prediction [8.575998118995216]
Existing bitcoin prediction works mostly on trivial feature engineering.
We propose k-order transaction graph to reveal patterns under different scope.
A novel prediction method is proposed to accept the features and make price prediction, which can take advantage from particular patterns from different history period.
arXiv Detail & Related papers (2020-08-21T20:08:17Z) - Bitcoin Transaction Forecasting with Deep Network Representation
Learning [16.715475608359046]
This paper presents a novel approach to developing a Bitcoin transaction forecast model, DLForecast, by leveraging deep neural networks for learning Bitcoin transaction network representations.
We construct a time-decaying reachability graph and a time-decaying transaction pattern graph, aiming at capturing different types of spatial-temporal Bitcoin transaction patterns.
We show that our spatial-temporal forecasting model is efficient with fast runtime and effective with forecasting accuracy over 60% and improves the prediction performance by 50% when compared to forecasting model built on the static graph baseline.
arXiv Detail & Related papers (2020-07-15T21:11:32Z) - Real-Time Prediction of BITCOIN Price using Machine Learning Techniques
and Public Sentiment Analysis [0.0]
The objective of this paper is to determine the predictable price direction of Bitcoin in USD by machine learning techniques and sentiment analysis.
Twitter and Reddit have attracted a great deal of attention from researchers to study public sentiment.
We have applied sentiment analysis and supervised machine learning principles to the extracted tweets from Twitter and Reddit posts.
arXiv Detail & Related papers (2020-06-18T15:40:11Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.