DocGen: Generating Detailed Parameter Docstrings in Python
- URL: http://arxiv.org/abs/2311.06453v3
- Date: Fri, 17 Nov 2023 22:30:27 GMT
- Title: DocGen: Generating Detailed Parameter Docstrings in Python
- Authors: Vatsal Venkatkrishna, Durga Shree Nagabushanam, Emmanuel Iko-Ojo
Simon, Melina Vidoni
- Abstract summary: We propose a multi-step approach that combines multiple task-specific models, each adept at producing a specific section of a docstring.
We compared the results from our approach with existing generative models using both automatic metrics and a human-centred evaluation with 17 participating developers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Documentation debt hinders the effective utilization of open-source software.
Although code summarization tools have been helpful for developers, most would
prefer a detailed account of each parameter in a function rather than a
high-level summary. However, generating such a summary is too intricate for a
single generative model to produce reliably due to the lack of high-quality
training data. Thus, we propose a multi-step approach that combines multiple
task-specific models, each adept at producing a specific section of a
docstring. The combination of these models ensures the inclusion of each
section in the final docstring. We compared the results from our approach with
existing generative models using both automatic metrics and a human-centred
evaluation with 17 participating developers, which proves the superiority of
our approach over existing methods.
Related papers
- DocAgent: A Multi-Agent System for Automated Code Documentation Generation [7.653779364214401]
We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building.
Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation.
We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness.
arXiv Detail & Related papers (2025-04-11T17:50:08Z) - Enhanced Retrieval of Long Documents: Leveraging Fine-Grained Block Representations with Large Language Models [24.02950598944251]
We introduce a novel, fine-grained approach aimed at enhancing the accuracy of relevance scoring for long documents.
Our methodology firstly segments a long document into blocks, each of which is embedded using an LLM.
We aggregate the query-block relevance scores through a weighted sum method, yielding a comprehensive score for the query with the entire document.
arXiv Detail & Related papers (2025-01-28T16:03:52Z) - M-Longdoc: A Benchmark For Multimodal Super-Long Document Understanding And A Retrieval-Aware Tuning Framework [75.95430061891828]
We introduce M-LongDoc, a benchmark of 851 samples, and an automated framework to evaluate the performance of large multimodal models.
We propose a retrieval-aware tuning approach for efficient and effective multimodal document reading.
arXiv Detail & Related papers (2024-11-09T13:30:38Z) - Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books.
Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text.
arXiv Detail & Related papers (2024-05-31T20:15:10Z) - AutoRE: Document-Level Relation Extraction with Large Language Models [27.426703757501507]
We introduce AutoRE, an end-to-end DocRE model that adopts a novel RE extraction paradigm named RHF (Relation-Head-Facts)
Unlike existing approaches, AutoRE does not rely on the assumption of known relation options, making it more reflective of real-world scenarios.
Our experiments on the RE-DocRED dataset showcase AutoRE's best performance, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-03-21T23:48:21Z) - CodeExp: Explanatory Code Document Generation [94.43677536210465]
Existing code-to-text generation models produce only high-level summaries of code.
We conduct a human study to identify the criteria for high-quality explanatory docstring for code.
We present a multi-stage fine-tuning strategy and baseline models for the task.
arXiv Detail & Related papers (2022-11-25T18:05:44Z) - DORE: Document Ordered Relation Extraction based on Generative Framework [56.537386636819626]
This paper investigates the root cause of the underwhelming performance of the existing generative DocRE models.
We propose to generate a symbolic and ordered sequence from the relation matrix which is deterministic and easier for model to learn.
Experimental results on four datasets show that our proposed method can improve the performance of the generative DocRE models.
arXiv Detail & Related papers (2022-10-28T11:18:10Z) - Large-Scale Multi-Document Summarization with Information Extraction and
Compression [31.601707033466766]
We develop an abstractive summarization framework independent of labeled data for multiple heterogeneous documents.
Our framework processes documents telling different stories instead of documents on the same topic.
Our experiments demonstrate that our framework outperforms current state-of-the-art methods in this more generic setting.
arXiv Detail & Related papers (2022-05-01T19:49:15Z) - PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document
Summarization [16.830963601598242]
We propose PRIMER, a pre-trained model for multi-document representation with focus on summarization.
Specifically, we adopt the Longformer architecture with proper input transformation and global attention to fit for multi-document inputs.
Our model, PRIMER, outperforms current state-of-the-art models on most of these settings with large margins.
arXiv Detail & Related papers (2021-10-16T07:22:24Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z) - Multi-layer Optimizations for End-to-End Data Analytics [71.05611866288196]
We introduce Iterative Functional Aggregate Queries (IFAQ), a framework that realizes an alternative approach.
IFAQ treats the feature extraction query and the learning task as one program given in the IFAQ's domain-specific language.
We show that a Scala implementation of IFAQ can outperform mlpack, Scikit, and specialization by several orders of magnitude for linear regression and regression tree models over several relational datasets.
arXiv Detail & Related papers (2020-01-10T16:14:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.