Enhanced Retrieval of Long Documents: Leveraging Fine-Grained Block Representations with Large Language Models
- URL: http://arxiv.org/abs/2501.17039v1
- Date: Tue, 28 Jan 2025 16:03:52 GMT
- Title: Enhanced Retrieval of Long Documents: Leveraging Fine-Grained Block Representations with Large Language Models
- Authors: Minghan Li, Eric Gaussier, Guodong Zhou,
- Abstract summary: We introduce a novel, fine-grained approach aimed at enhancing the accuracy of relevance scoring for long documents.
Our methodology firstly segments a long document into blocks, each of which is embedded using an LLM.
We aggregate the query-block relevance scores through a weighted sum method, yielding a comprehensive score for the query with the entire document.
- Score: 24.02950598944251
- License:
- Abstract: In recent years, large language models (LLMs) have demonstrated exceptional power in various domains, including information retrieval. Most of the previous practices involve leveraging these models to create a single embedding for each query, each passage, or each document individually, a strategy exemplified and used by the Retrieval-Augmented Generation (RAG) framework. While this method has proven effective, we argue that it falls short in fully capturing the nuanced intricacies of document-level texts due to its reliance on a relatively coarse-grained representation. To address this limitation, we introduce a novel, fine-grained approach aimed at enhancing the accuracy of relevance scoring for long documents. Our methodology firstly segments a long document into blocks, each of which is embedded using an LLM, for matching with the query representation. When calculating the relevance score, we aggregate the query-block relevance scores through a weighted sum method, yielding a comprehensive score for the query with the entire document. Despite its apparent simplicity, our experimental findings reveal that this approach outperforms standard representation methods and achieves a significant reduction in embedding generation latency. Moreover, by carefully optimizing pairwise loss functions, superior performances have been achieved.
Related papers
- Learning More Effective Representations for Dense Retrieval through Deliberate Thinking Before Search [65.53881294642451]
Deliberate Thinking based Dense Retriever (DEBATER)
DEBATER enhances recent dense retrievers by enabling them to learn more effective document representations through a step-by-step thinking process.
Experimental results show that DEBATER significantly outperforms existing methods across several retrieval benchmarks.
arXiv Detail & Related papers (2025-02-18T15:56:34Z) - Context-Aware Hierarchical Merging for Long Document Summarization [56.96619074316232]
We propose different approaches to enrich hierarchical merging with context from the source document.
Experimental results on datasets representing legal and narrative domains show that contextual augmentation consistently outperforms zero-shot and hierarchical merging baselines.
arXiv Detail & Related papers (2025-02-03T01:14:31Z) - Beyond Relevant Documents: A Knowledge-Intensive Approach for Query-Focused Summarization using Large Language Models [27.90653125902507]
We propose a knowledge-intensive approach that reframes query-focused summarization as a knowledge-intensive task setup.
The retrieval module efficiently retrieves potentially relevant documents from a large-scale knowledge corpus.
The summarization controller seamlessly integrates a powerful large language model (LLM)-based summarizer with a carefully tailored prompt.
arXiv Detail & Related papers (2024-08-19T18:54:20Z) - Fine-Grained Distillation for Long Document Retrieval [86.39802110609062]
Long document retrieval aims to fetch query-relevant documents from a large-scale collection.
Knowledge distillation has become de facto to improve a retriever by mimicking a heterogeneous yet powerful cross-encoder.
We propose a new learning framework, fine-grained distillation (FGD), for long-document retrievers.
arXiv Detail & Related papers (2022-12-20T17:00:36Z) - Revisiting text decomposition methods for NLI-based factuality scoring
of summaries [9.044665059626958]
We show that fine-grained decomposition is not always a winning strategy for factuality scoring.
We also show that small changes to previously proposed entailment-based scoring methods can result in better performance.
arXiv Detail & Related papers (2022-11-30T09:54:37Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
We propose a principled inference framework to improve summarization models on two aspects.
Our framework assumes a hierarchical latent structure of a document where the top-level captures the long range dependency.
We demonstrate the effectiveness of the proposed framework on a diverse set of summarization datasets.
arXiv Detail & Related papers (2022-03-15T01:24:51Z) - CODER: An efficient framework for improving retrieval through
COntextualized Document Embedding Reranking [11.635294568328625]
We present a framework for improving the performance of a wide class of retrieval models at minimal computational cost.
It utilizes precomputed document representations extracted by a base dense retrieval method.
It incurs a negligible computational overhead on top of any first-stage method at run time, allowing it to be easily combined with any state-of-the-art dense retrieval method.
arXiv Detail & Related papers (2021-12-16T10:25:26Z) - Value Retrieval with Arbitrary Queries for Form-like Documents [50.5532781148902]
We propose value retrieval with arbitrary queries for form-like documents.
Our method predicts target value for an arbitrary query based on the understanding of layout and semantics of a form.
We propose a simple document language modeling (simpleDLM) strategy to improve document understanding on large-scale model pre-training.
arXiv Detail & Related papers (2021-12-15T01:12:02Z) - Text Summarization with Latent Queries [60.468323530248945]
We introduce LaQSum, the first unified text summarization system that learns Latent Queries from documents for abstractive summarization with any existing query forms.
Under a deep generative framework, our system jointly optimize a latent query model and a conditional language model, allowing users to plug-and-play queries of any type at test time.
Our system robustly outperforms strong comparison systems across summarization benchmarks with different query types, document settings, and target domains.
arXiv Detail & Related papers (2021-05-31T21:14:58Z) - WSL-DS: Weakly Supervised Learning with Distant Supervision for Query
Focused Multi-Document Abstractive Summarization [16.048329028104643]
In the Query Focused Multi-Document Summarization (QF-MDS) task, a set of documents and a query are given where the goal is to generate a summary from these documents.
One major challenge for this task is the lack of availability of labeled training datasets.
We propose a novel weakly supervised learning approach via utilizing distant supervision.
arXiv Detail & Related papers (2020-11-03T02:02:55Z) - A Divide-and-Conquer Approach to the Summarization of Long Documents [4.863209463405628]
We present a novel divide-and-conquer method for the neural summarization of long documents.
Our method exploits the discourse structure of the document and uses sentence similarity to split the problem into smaller summarization problems.
We demonstrate that this approach paired with different summarization models, including sequence-to-sequence RNNs and Transformers, can lead to improved summarization performance.
arXiv Detail & Related papers (2020-04-13T20:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.