Aria-NeRF: Multimodal Egocentric View Synthesis
- URL: http://arxiv.org/abs/2311.06455v2
- Date: Tue, 19 Mar 2024 02:59:03 GMT
- Title: Aria-NeRF: Multimodal Egocentric View Synthesis
- Authors: Jiankai Sun, Jianing Qiu, Chuanyang Zheng, John Tucker, Javier Yu, Mac Schwager,
- Abstract summary: We seek to accelerate research in developing rich, multimodal scene models trained from egocentric data, based on differentiable volumetric ray-tracing inspired by Neural Radiance Fields (NeRFs)
This dataset offers a comprehensive collection of sensory data, featuring RGB images, eye-tracking camera footage, audio recordings from a microphone, atmospheric pressure readings from a barometer, positional coordinates from GPS, and information from dual-frequency IMU datasets (1kHz and 800Hz)
The diverse data modalities and the real-world context captured within this dataset serve as a robust foundation for furthering our understanding of human behavior and enabling more immersive and intelligent experiences in
- Score: 17.0554791846124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We seek to accelerate research in developing rich, multimodal scene models trained from egocentric data, based on differentiable volumetric ray-tracing inspired by Neural Radiance Fields (NeRFs). The construction of a NeRF-like model from an egocentric image sequence plays a pivotal role in understanding human behavior and holds diverse applications within the realms of VR/AR. Such egocentric NeRF-like models may be used as realistic simulations, contributing significantly to the advancement of intelligent agents capable of executing tasks in the real-world. The future of egocentric view synthesis may lead to novel environment representations going beyond today's NeRFs by augmenting visual data with multimodal sensors such as IMU for egomotion tracking, audio sensors to capture surface texture and human language context, and eye-gaze trackers to infer human attention patterns in the scene. To support and facilitate the development and evaluation of egocentric multimodal scene modeling, we present a comprehensive multimodal egocentric video dataset. This dataset offers a comprehensive collection of sensory data, featuring RGB images, eye-tracking camera footage, audio recordings from a microphone, atmospheric pressure readings from a barometer, positional coordinates from GPS, connectivity details from Wi-Fi and Bluetooth, and information from dual-frequency IMU datasets (1kHz and 800Hz) paired with a magnetometer. The dataset was collected with the Meta Aria Glasses wearable device platform. The diverse data modalities and the real-world context captured within this dataset serve as a robust foundation for furthering our understanding of human behavior and enabling more immersive and intelligent experiences in the realms of VR, AR, and robotics.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - RoboSense: Large-scale Dataset and Benchmark for Egocentric Robot Perception and Navigation in Crowded and Unstructured Environments [62.5830455357187]
We setup an egocentric multi-sensor data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye)
A large-scale multimodal dataset is constructed, named RoboSense, to facilitate egocentric robot perception.
arXiv Detail & Related papers (2024-08-28T03:17:40Z) - Masked Video and Body-worn IMU Autoencoder for Egocentric Action Recognition [24.217068565936117]
We present a novel method for action recognition that integrates motion data from body-worn IMUs with egocentric video.
To model the complex relation of multiple IMU devices placed across the body, we exploit the collaborative dynamics in multiple IMU devices.
Experiments show our method can achieve state-of-the-art performance on multiple public datasets.
arXiv Detail & Related papers (2024-07-09T07:53:16Z) - Nymeria: A Massive Collection of Multimodal Egocentric Daily Motion in the Wild [66.34146236875822]
The Nymeria dataset is a large-scale, diverse, richly annotated human motion dataset collected in the wild with multiple multimodal egocentric devices.
It contains 1200 recordings of 300 hours of daily activities from 264 participants across 50 locations, travelling a total of 399Km.
The motion-language descriptions provide 310.5K sentences in 8.64M words from a vocabulary size of 6545.
arXiv Detail & Related papers (2024-06-14T10:23:53Z) - LiveHPS: LiDAR-based Scene-level Human Pose and Shape Estimation in Free
Environment [59.320414108383055]
We present LiveHPS, a novel single-LiDAR-based approach for scene-level human pose and shape estimation.
We propose a huge human motion dataset, named FreeMotion, which is collected in various scenarios with diverse human poses.
arXiv Detail & Related papers (2024-02-27T03:08:44Z) - Headset: Human emotion awareness under partial occlusions multimodal
dataset [19.57427512904342]
We present a new multimodal database to help advance the development of immersive technologies.
Our proposed database provides ethically compliant and diverse volumetric data, in particular 27 participants displaying posed facial expressions and subtle body movements while speaking, plus 11 participants wearing head-mounted displays (HMDs)
The dataset can be helpful in the evaluation and performance testing of various XR algorithms, including but not limited to facial expression recognition and reconstruction, facial reenactment, and volumetric video.
arXiv Detail & Related papers (2024-02-14T11:42:15Z) - MultiPLY: A Multisensory Object-Centric Embodied Large Language Model in
3D World [55.878173953175356]
We propose MultiPLY, a multisensory embodied large language model.
We first collect Multisensory Universe, a large-scale multisensory interaction dataset comprising 500k data.
We demonstrate that MultiPLY outperforms baselines by a large margin through a diverse set of embodied tasks.
arXiv Detail & Related papers (2024-01-16T18:59:45Z) - ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation [75.0278287071591]
ThreeDWorld (TDW) is a platform for interactive multi-modal physical simulation.
TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments.
We present initial experiments enabled by TDW in emerging research directions in computer vision, machine learning, and cognitive science.
arXiv Detail & Related papers (2020-07-09T17:33:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.