論文の概要: FDNet: Feature Decoupled Segmentation Network for Tooth CBCT Image
- arxiv url: http://arxiv.org/abs/2311.06551v1
- Date: Sat, 11 Nov 2023 12:00:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 17:54:29.270046
- Title: FDNet: Feature Decoupled Segmentation Network for Tooth CBCT Image
- Title(参考訳): FDNet:歯のCBCT画像のための特徴分離セグメンテーションネットワーク
- Authors: Xiang Feng, Chengkai Wang, Chengyu Wu, Yunxiang Li, Yongbo He, Shuai
Wang, Yaiqi Wang
- Abstract要約: 本稿では,CBCTスキャンで遭遇する歯質変化状況に優れた特徴デカップリングネットワークであるFDNetを提案する。
フレームワークの有効性は厳格なベンチマークによって検証され、それぞれ85.28%と75.23%のDiceとIoUのスコアを達成している。
- 参考スコア(独自算出の注目度): 5.728846115248074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precise Tooth Cone Beam Computed Tomography (CBCT) image segmentation is
crucial for orthodontic treatment planning. In this paper, we propose FDNet, a
Feature Decoupled Segmentation Network, to excel in the face of the variable
dental conditions encountered in CBCT scans, such as complex artifacts and
indistinct tooth boundaries. The Low-Frequency Wavelet Transform (LF-Wavelet)
is employed to enrich the semantic content by emphasizing the global structural
integrity of the teeth, while the SAM encoder is leveraged to refine the
boundary delineation, thus improving the contrast between adjacent dental
structures. By integrating these dual aspects, FDNet adeptly addresses the
semantic gap, providing a detailed and accurate segmentation. The framework's
effectiveness is validated through rigorous benchmarks, achieving the top Dice
and IoU scores of 85.28% and 75.23%, respectively. This innovative decoupling
of semantic and boundary features capitalizes on the unique strengths of each
element to significantly elevate the quality of segmentation performance.
- Abstract(参考訳): 精密歯列ビームCT(CBCT)画像分割は矯正治療計画に不可欠である。
本稿では, CBCTスキャンで遭遇する歯質変化状況, 複雑なアーチファクトや不明瞭な歯の境界などに対して, FDNet(Feature Decoupled Segmentation Network, FDNet)を提案する。
低周波ウェーブレット変換 (LF-Wavelet) は, 歯のグローバルな構造的整合性を強調することで, セマンティックな内容の充実を図り, SAMエンコーダを用いて境界線を改良し, 隣接する歯科構造とのコントラストを向上させる。
これらの2つの側面を統合することで、FDNetはセマンティックギャップに十分対処し、詳細で正確なセグメンテーションを提供する。
フレームワークの有効性は厳格なベンチマークによって検証され、それぞれ85.28%と75.23%のDiceとIoUのスコアを達成している。
この意味的特徴と境界的特徴の革新的な分離は、各要素のユニークな強みを生かし、セグメンテーション性能を著しく向上させる。
関連論文リスト
- CDSE-UNet: Enhancing COVID-19 CT Image Segmentation with Canny Edge
Detection and Dual-Path SENet Feature Fusion [10.831487161893305]
CDSE-UNetは、Canny演算子エッジ検出とデュアルパスSENet機能融合機構を統合した、新しいUNetベースのセグメンテーションモデルである。
我々は,UNetの標準畳み込みを代替するマルチスケール畳み込み手法を開発し,病変の大きさや形状に適応した。
公開データセットの評価では、他の主要なモデルよりもCDSE-UNetの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-03-03T13:36:07Z) - Sparse Anatomical Prompt Semi-Supervised Learning with Masked Image
Modeling for CBCT Tooth Segmentation [10.617296334463942]
Cone Beam Computed Tomography (CBCT) 歯科画像における歯の識別とセグメンテーションは, 歯科医が行う手技診断の効率と精度を著しく向上させることができる。
既存のセグメンテーション手法は主に大規模なデータボリュームトレーニングに基づいて開発され、そのアノテーションは非常に時間がかかります。
本研究では, 大量の未ラベルデータを効果的に活用し, 限られたラベル付きデータで正確な歯のセグメンテーションを実現するタスク指向Masked Auto-Encoderパラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-07T05:05:21Z) - Multiclass Segmentation using Teeth Attention Modules for Dental X-ray
Images [8.041659727964305]
本研究では,スイニングトランスフォーマーとTABを用いたM-Net様構造を取り入れた新しい歯のセグメンテーションモデルを提案する。
提案したTABは、歯の複雑な構造に特化するユニークな注意機構を利用する。
提案アーキテクチャは,各歯とその周辺構造を正確に定義し,局所的およびグローバルな文脈情報を効果的に取得する。
論文 参考訳(メタデータ) (2023-11-07T06:20:34Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Semantic decomposition Network with Contrastive and Structural
Constraints for Dental Plaque Segmentation [33.40662847763453]
デンタルプラークのセグメンテーションは、セマンティックブルーの領域で歯とデンタルプラークを識別する必要がある課題である。
本稿では, 歯と歯冠のセグメンテーションに対処するため, 2つの単一タスク枝を導入した意味分解ネットワーク(SDNet)を提案する。
論文 参考訳(メタデータ) (2022-08-12T14:10:29Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
TS-MDLの最初の段階では、mphiMeshSegNetは0.953pm0.076$で平均Dice類似係数(DSC)に達した。
PointNet-Reg は平均絶対誤差 (MAE) が 0.623pm0.718, mm$ であり、ランドマーク検出の他のネットワークよりも優れている。
論文 参考訳(メタデータ) (2021-09-24T13:00:26Z) - Batch Coherence-Driven Network for Part-aware Person Re-Identification [79.33809815035127]
既存のパートアウェアの人物再識別方法は、通常、ボディ部分の検出と部分レベルの特徴抽出という2つのステップを使用する。
トレーニングフェーズとテストフェーズの両方で身体の一部をバイパスし,セマンティックに整合した機能を実現するNetworkBCDNetを提案する。
論文 参考訳(メタデータ) (2020-09-21T09:04:13Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
我々は、Synergistic Image and Feature Alignment (SIFA)と名付けられた新しい教師なしドメイン適応フレームワークを提案する。
提案するSIFAは、画像と特徴の両方の観点から、ドメインの相乗的アライメントを行う。
2つの異なるタスクに対する実験結果から,SIFA法は未ラベル対象画像のセグメンテーション性能を向上させるのに有効であることが示された。
論文 参考訳(メタデータ) (2020-02-06T13:49:47Z) - Pose-Aware Instance Segmentation Framework from Cone Beam CT Images for
Tooth Segmentation [9.880428545498662]
コーンビームCT(CBCT)画像からの個々の歯のセグメンテーションは矯正構造の解剖学的理解に不可欠である。
CBCT画像中の重金属人工物の存在は、個々の歯の正確なセグメンテーションを妨げる。
本稿では,金属製品に対して堅牢なインスタンスセグメンテーションフレームワークを活用するために,ピクセルワイズラベリングのためのニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-02-06T07:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。