Monkey: Image Resolution and Text Label Are Important Things for Large Multi-modal Models
- URL: http://arxiv.org/abs/2311.06607v4
- Date: Mon, 26 Aug 2024 06:57:51 GMT
- Title: Monkey: Image Resolution and Text Label Are Important Things for Large Multi-modal Models
- Authors: Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, Xiang Bai,
- Abstract summary: Large Multimodal Models (LMMs) have shown promise in vision-language tasks but struggle with high-resolution input and detailed scene understanding.
We introduce Monkey to enhance LMM capabilities.
Monkey processes input images by dividing them into uniform patches, each matching the size (e.g., 448x448) used in the original training of the well-trained vision encoder.
It can handle higher resolutions up to 1344x896 pixels, enabling the detailed capture of complex visual information.
- Score: 55.508049882447395
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Multimodal Models (LMMs) have shown promise in vision-language tasks but struggle with high-resolution input and detailed scene understanding. Addressing these challenges, we introduce Monkey to enhance LMM capabilities. Firstly, Monkey processes input images by dividing them into uniform patches, each matching the size (e.g., 448x448) used in the original training of the well-trained vision encoder. Equipped with individual adapter for each patch, Monkey can handle higher resolutions up to 1344x896 pixels, enabling the detailed capture of complex visual information. Secondly, it employs a multi-level description generation method, enriching the context for scene-object associations. This two-part strategy ensures more effective learning from generated data: the higher resolution allows for a more detailed capture of visuals, which in turn enhances the effectiveness of comprehensive descriptions. Extensive ablative results validate the effectiveness of our designs. Additionally, experiments on 18 datasets further demonstrate that Monkey surpasses existing LMMs in many tasks like Image Captioning and various Visual Question Answering formats. Specially, in qualitative tests focused on dense text question answering, Monkey has exhibited encouraging results compared with GPT4V. Code is available at https://github.com/Yuliang-Liu/Monkey.
Related papers
- Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks [62.758680527838436]
We propose Leopard, an MLLM tailored for handling vision-language tasks involving multiple text-rich images.<n>First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios.<n>Second, we proposed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length.
arXiv Detail & Related papers (2024-10-02T16:55:01Z) - FullAnno: A Data Engine for Enhancing Image Comprehension of MLLMs [58.95386070800286]
FullAnno is a data engine that generates large-scale, high-quality, and fine-grained image annotations.
We re-annotated the COCO and Visual Genome datasets using our FullAnno system.
Experiments show that the regenerated annotation can significantly enhance the capabilities of LLaVA-v1.5 on several benchmarks.
arXiv Detail & Related papers (2024-09-20T14:33:17Z) - AdaptVision: Dynamic Input Scaling in MLLMs for Versatile Scene Understanding [96.01726275876548]
We present AdaptVision, a multimodal large language model specifically designed to dynamically process input images at varying resolutions.
We devise a dynamic image partitioning module that adjusts the number of visual tokens according to the size and aspect ratio of images.
Our model is capable of processing images with resolutions up to $1008times 1008$.
arXiv Detail & Related papers (2024-08-30T03:16:49Z) - DocKylin: A Large Multimodal Model for Visual Document Understanding with Efficient Visual Slimming [33.40963475653868]
DocKylin is a document-centric MLLM that performs visual content slimming at both the pixel and token levels.
We introduce an Adaptive Pixel Slimming (APS) preprocessing module to perform pixel-level slimming.
We also propose a novel Dynamic Token Slimming (DTS) module to conduct token-level slimming.
arXiv Detail & Related papers (2024-06-27T11:28:36Z) - Beyond LLaVA-HD: Diving into High-Resolution Large Multimodal Models [44.437693135170576]
We propose a new framework, LMM with Sophisticated Tasks, Local image compression, and Mixture of global Experts (SliME)
We extract contextual information from the global view using a mixture of adapters, based on the observation that different adapters excel at different tasks.
The proposed method achieves leading performance across various benchmarks with only 2 million training data.
arXiv Detail & Related papers (2024-06-12T17:59:49Z) - Matryoshka Multimodal Models [92.41824727506751]
We propose M3: Matryoshka Multimodal Models, which learns to represent visual content as nested sets of visual tokens.
We find that COCO-style benchmarks only need around 9 visual tokens to obtain accuracy similar to that of using all 576 tokens.
arXiv Detail & Related papers (2024-05-27T17:59:56Z) - Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model [83.85856356798531]
VistaLLM is a visual system that addresses coarse- and fine-grained vision-language tasks.
It employs a gradient-aware adaptive sampling technique to represent binary segmentation masks as sequences.
We also introduce a novel task, AttCoSeg, which boosts the model's reasoning and grounding capability over multiple input images.
arXiv Detail & Related papers (2023-12-19T18:53:01Z) - Pink: Unveiling the Power of Referential Comprehension for Multi-modal
LLMs [49.88461345825586]
This paper proposes a new framework to enhance the fine-grained image understanding abilities of MLLMs.
We present a new method for constructing the instruction tuning dataset at a low cost by leveraging annotations in existing datasets.
We show that our model exhibits a 5.2% accuracy improvement over Qwen-VL and surpasses the accuracy of Kosmos-2 by 24.7%.
arXiv Detail & Related papers (2023-10-01T05:53:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.