Diamond quantum sensors in microfluidics technology
- URL: http://arxiv.org/abs/2311.06656v1
- Date: Sat, 11 Nov 2023 19:54:52 GMT
- Title: Diamond quantum sensors in microfluidics technology
- Authors: Masazumi Fujiwara
- Abstract summary: Diamond quantum sensing is an emerging technology for probing multiple physico-chemical parameters in the nano- to micro-scale dimensions.
Integrating these sensors into microfluidic devices enables the precise quantification and analysis of small sample volumes in microscale channels.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diamond quantum sensing is an emerging technology for probing multiple
physico-chemical parameters in the nano- to micro-scale dimensions within
diverse chemical and biological contexts. Integrating these sensors into
microfluidic devices enables the precise quantification and analysis of small
sample volumes in microscale channels. In this Perspective, we present recent
advancements in the integration of diamond quantum sensors with microfluidic
devices and explore their prospects with a focus on forthcoming technological
developments.
Related papers
- Complex 3-Dimensional Microscale Structures for Quantum Sensing
Applications [0.5200820391621738]
We present a novel method for fabricating highly customizable three-dimensional structures hosting quantum sensors based on Nitrogen Vacancy (NV) centers.
This approach overcomes challenges associated with structuring traditional single-crystal quantum sensing platforms.
We demonstrate high sensitivity optical sensing of temperature and magnetic fields at the microscale.
arXiv Detail & Related papers (2023-07-27T23:45:40Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Ultra-High Q Nanomechanical Resonators for Force Sensing [91.3755431537592]
I propose that such resonators will allow the detection of electron and nuclear spins with high spatial resolution.
The article lists the challenges that must be overcome before this vision can become reality, and indicates potential solutions.
arXiv Detail & Related papers (2022-09-12T12:21:00Z) - Microfluidic quantum sensing platform for lab-on-a-chip applications [0.0]
We present a fully integrated microfluidic platform for solid-state spin quantum sensors, such as the nitrogen-vacancy center in diamond.
Our work opens the door for novel chemical analysis capabilities within LOC devices with applications in electrochemistry, high throughput reaction screening, bioanalytics, organ-on-a-chip, or single-cell studies.
arXiv Detail & Related papers (2022-09-04T16:01:56Z) - Advances in nano- and microscale NMR spectroscopy using diamond quantum
sensors [0.0]
Quantum technologies have seen a rapid developmental surge over the last couple of years.
One system stands out in particular: the nitrogen-vacancy center in diamond, an atomic-sized sensor allowing the detection of nuclear magnetic resonance (NMR) signals at unprecedented length scales down to a single proton.
arXiv Detail & Related papers (2022-05-24T16:22:11Z) - Quantum Sensors for High Precision Measurements of Spin-dependent
Interactions [47.187609203210705]
Experimental methods and technologies developed for quantum information science have rapidly advanced in recent years.
Spin-based quantum sensors can be used to search for myriad phenomena.
Spin-based quantum sensors offer a methodology for tests of fundamental physics that is complementary to particle colliders and large scale particle detectors.
arXiv Detail & Related papers (2022-03-17T17:36:48Z) - Nanodiamonds based optical-fiber quantum probe for magnetic field and
biological sensing [6.643766442180283]
In this work, a miniature optical-fiber quantum probe, configured by chemically-modifying nanodiamonds NV centers, is developed.
The magnetic field detection sensitivity of the probe is significantly enhanced to 0.57 nT/Hz1/2 @ 1Hz, a new record among the fiber magnetometers based on nanodiamonds NV.
arXiv Detail & Related papers (2022-02-24T01:41:13Z) - Biocompatible surface functionalization architecture for a diamond
quantum sensor [0.0]
Diamond-based quantum sensing has enabled new class of biophysical sensors and diagnostic devices.
New approach combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules.
arXiv Detail & Related papers (2021-08-10T18:01:35Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.